MATH 165

FALL 2006
FINAL EXAM

1. $(24 \mathrm{pt})$ Evaluate the following limits if they exist.
a) $\lim _{x \rightarrow 1} \frac{\ln (x)-x+1}{(x-1) \sin (\pi x)}$
b) $\lim _{x \rightarrow \infty} \sin \left(\sqrt{\frac{2 x^{2}}{3 x^{2}-x+1}}\right)$
c) $\lim _{x \rightarrow 0}\left(\frac{1}{3 x+1}\right)^{\frac{4}{x}}$
d) $\lim _{x \rightarrow \infty} \frac{x \tan ^{-1}(x)}{e^{2 x}+1}$
2. (24 pt) Find the derivatives of the following functions (for the first part, assume $F^{\prime}(x)$ is differentiable).
a) $f(x)=F(x)^{F^{\prime}(x)}$
b) $g(x)=\sin (x) \cos (x) \tan (x) \sec (x) \csc (x) \cot (x)$
c) $h(x)=\frac{\ln \left(x^{2}+\sin (2 x)\right)}{\sqrt{\tan (x)+3 x}}$
d) $k(x)=\int_{g(x)}^{f(x)}\left(3 t^{2}+1\right) d t$
3. (15 pt) Evaluate the following integrals.
a) $\int \frac{3 x}{\sqrt{x}+1} d x$
b) $\int_{0}^{\frac{\pi}{4}} \frac{\tan (x) \sec ^{2}(x)}{\tan ^{2}(x)+3} d x$
c) $\int \sin ^{3}(x) d x$
4. (5 pt) Use the definition of the derivative to find the derivative of $f(x)=\frac{a}{b x+c} ; b, c$ not both zero.
5. (5 pt) Evaluate the limit

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{b}{n}\right) \cos \left(i\left(\frac{b}{n}\right)\right)
$$

6. (8 pt) A cone of radius 4 feet and height 8 feet (with circular base facing up) is being filled with water at a rate of 20 cubic feet per minute. How fast is the area of the circular surface of the water in the cone changing when the depth of the water is 6 feet? (The volume of a cone with base area A and height h is given by $V=\frac{1}{3} A h$.)
7. (10 pt) Consider a rectangle inscribed inside a circle of radius R. Find the proportion of the area of the largest rectangle that can be put inside this circle to the area of the circle.
8. (10 pt) Sketch the graph of the curve $f(x)=x^{\frac{5}{3}}-5 x^{\frac{2}{3}}=x^{\frac{2}{3}}(x-5)$. The first two derivatives are given by

$$
f^{\prime}(x)=\frac{5}{3} x^{-\frac{1}{3}}(x-2)
$$

and

$$
f^{\prime \prime}(x)=\frac{10}{9} x^{-\frac{4}{3}}(x+1) .
$$

9. (4 pt) Find the tangent line to $\sin (x+y)+1=\cos (x-y)$ at $(0,0)$.
10. (5 pt) Consider the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 ; a, b>0$. Set up an integral that gives the area inside this ellipse and then find the area (hint: the substitution $u=\frac{x}{a}$ might help you to change this into an integral that you can evaluate).
