MATH 165
 FALL 2009
 FINAL EXAM

1. $(25 \mathrm{pt})$ Evaluate the following limits if they exist.
a) $\lim _{x \rightarrow-2} \frac{x^{4}-4 x-24}{x^{3}+x^{2}-x+2}$
b) $\lim _{x \rightarrow \infty} x \sin \left(\frac{1}{x}\right)$
c) $\lim _{x \rightarrow 0}\left(\frac{1}{a x+1}\right)^{\left(\frac{1}{b x}\right)}$
d) $\lim _{x \rightarrow \infty} \frac{x+\sin (x)}{x \sqrt{x}}$
e) $\lim _{x \rightarrow \infty} \frac{2 x^{3}}{\sqrt{x^{6}+1}}$
2. (24 pt) Find the derivatives of the following functions.
a) $f(x)=g(\sqrt{x}) h\left(x^{2}\right)$
b) $f(x)=x^{(a x)^{(b x)}}$
c) $h(x)=\tan ^{-1}\left(\sin \left(x^{2}+1\right)\right)$
d) $k(x)=\int_{e^{2 x}}^{x^{3}} \cos \left(t^{2}\right) d t$
3. (18 pt) Evaluate the following integrals.
a) $\int_{-1}^{1} \frac{\tan ^{-1}(x) \tan ^{2}\left(x^{2}\right)}{x^{4}+1} d x$
b) $\int \frac{\sin (2 x)}{\sin ^{2}(x)+a^{2}} d x, a \neq 0$
c) $\int_{0}^{\ln (2)} \frac{e^{x}}{2 e^{x}+4} d x$
4. (5 pt) Use the definition of the derivative to find the derivative of $f(x)=\sqrt{x^{2}+4 x}$.
5. (5 pt) Use the definition of the definite integral to find $\int_{0}^{4}(4 x-2) d x$.
6. (8 pt) Find the area of the largest triangle that can be inscribed inside a circle of radius R.
7. (5 pt) A conical tank (with circular base on top) is being filled with water at a constant rate. The tank has base radius 6 feet and height 8 feet. If the water level is rising at 1 inch per second when the water is 4 feet deep, at what rate is the tank being filled (in cubic feet per second)?
8. (10 pt) Sketch the graph of the curve

$$
f(x)=\ln \left|x^{\frac{1}{3}}+1\right| .
$$

For your convenience, the first two derivatives are given by

$$
f^{\prime}(x)=\frac{1}{3 x^{\frac{2}{3}}\left(x^{\frac{1}{3}}+1\right)}
$$

and

$$
f^{\prime \prime}(x)=\frac{-\left(3 x^{\frac{1}{3}}+2\right)}{9 x^{\frac{5}{3}}\left(x^{\frac{1}{3}}+1\right)^{2}} .
$$

9. (5 pt) A curve is defined implicitly by the equation $y^{3}-x^{3}=x y+1$. Find the tangent line to this curve at the point $(0,1)$.
10. (5 pt) A spherical asteroid has a diameter of 100 miles ($\pm \frac{1}{2}$ miles). Use a linear approximation to estimate the maximum error in using the 100 mile measurement to compute the surface area of the asteroid. What is the relative error? (The surface area of a sphere of radius R is given by $S=4 \pi R^{2}$.)
