MATH 165
 FALL 2010
 FINAL EXAM

1. (24 pt) Evaluate the following limits (in part c), $f(t)$ is continuous).
a) $\lim _{x \rightarrow 1} \frac{\ln (x)-5 x+5}{x^{2}-1}$
b) $\lim _{x \rightarrow 0} x^{2} \tan ^{-1}\left(\sin \left(\frac{1}{x}\right)\right)$
c) $\lim _{h \rightarrow 0} \frac{\int_{a}^{x+h} f(t) d t-\int_{a}^{x} f(t) d t}{h}$
d) $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{4}-x}}{5 x^{2}+4}$
2. (24 pt) Find the derivative of each of the following functions.
a) $f(x)=x^{2} e^{\left(x^{2}+x\right)} \sin \left(x^{3}\right)$
b) $g(x)=\frac{F(G(x))}{x^{x^{2}}+\cos (x)}$
c) $h(x)=\int_{x^{2}}^{x^{3}} e^{t^{2}} d t$
d) $k(x)=(\tan (x))^{\left(\sin \left(x^{2}\right)\right)}$
3. $(24 \mathrm{pt})$ Evaluate the following integrals.
a) $\int \frac{\ln \left(x^{5}\right)}{x} d x$
b) $\int_{0}^{\frac{\pi}{4}} \frac{4 \sin (x)}{\cos ^{2}(x)+1} d x$
c) $\int_{0}^{1} \frac{x^{2}+1}{x+1} d x$
d) $\int \frac{\cos (\sqrt{x})}{2 \sqrt{x}} d x$
4. (5 pt) Find the volume of the largest cylinder that can be inscribed inside a sphere of radius R.
5. (5 pt) Use the definition of the derivative to find the derivative of the function $f(x)=\sqrt{1-7 x}$.
6. (5 pt) An unstable cone of sand in the shape of a cone and volume 3000π cubic feet begins to collapse in such a way that its height is decreasing at 2 feet per second. If we assume that during the collapse, the pile always remains a cone, how fast is the radius increasing when the pile of sand is 10 feet tall?
7. (8 pt) Graph the function $f(x)=2 x^{\frac{1}{3}}+x^{\frac{2}{3}}$. The first two derivatives of $f(x)$ are given by $f^{\prime}(x)=\frac{2\left(1+x^{\frac{1}{3}}\right)}{3 x^{\frac{2}{3}}}$ and $f^{\prime \prime}(x)=\frac{-2\left(2+x^{\frac{1}{3}}\right)}{9 x^{\frac{5}{3}}}$.
8. (5 pt) Find the maximum and minimum values of the function $f(x)=x^{\frac{1}{3}}\left(7-x^{2}\right)$ on the interval $[0,2]$.
9. (5 pt) Use a linear approximation to estimate $\sqrt[3]{62}$. Is your estimate too large or too small?
10. (5 pt) Consider the circle $x^{2}+y^{2}=R^{2}$. Use implicit differentiation to show that the tangent line to this circle at any point is perpendicular to the radius of the circle at that point.
