MATH 166

SPRING 2003
EXAM 1

1. (48 pt) Evaluate the following integrals:
a) $\int \frac{\ln (x)}{x^{2}} d x$
b) $\int \frac{d x}{\sqrt{x^{2}+a^{2}}}(a \neq 0)$
c) $\int_{0}^{3} \frac{x^{2} d x}{\left(25-x^{2}\right)^{\frac{3}{2}}}$
d) $\int \frac{2 x^{3}+6 x^{2}+6 x+2}{x^{4}+2 x^{3}+2 x^{2}} d x$
e) $\int \sin (\sqrt{x}) d x$
f) $\int_{0}^{\frac{R}{2}} \frac{x d x}{\sqrt{R^{2}-x^{2}}}$
2. (10 pt) Suppose that 100 foot pounds of work is required to stretch a spring from its natural length of 1 foot to a length of 1.5 feet. If a 100 pound weight is hung on this spring, what will its stretched length be?
3. (16 pt) Consider the curves $f(x)=x^{3}-4 x$ and $g(x)=23 x-2 x^{3}$.
a) Find the area between the curves.
b) Find the volume obtained when the part of the region bounded by the curves to the right of the y-axis is revolved about the line $x=-1$.
4. (16 pt) Consider the region bounded by the x-axis, the y-axis and the line $y=1-x$.
a) Find the volume obtained when this region is revolved about the y-axis.
b) Let $y=m x$ be a line through the origin with positive slope ($m>0$) and consider the region bounded by $y=m x, y=1-x$ and the x-axis. Find the value of m so that when this region is revolved about the y-axis, the resulting volume is half the volume from part a).

5. (10 pt) Let $f(x)$ be a differentiable function such that:

$$
\int_{0}^{2} x^{2} f^{\prime}(x) d x=4 \text { and } \int_{0}^{2} x f(x) d x=6
$$

find $f(2)$.
6. (10 pt) Consider the region bounded by the curves $y=\frac{1}{1+x^{2}}$, the y-axis, the x-axis, and $x=n$ $(n>0)$. Find the volume obtained when this region is revolved about the x-axis. What happens to your answer as $n \longrightarrow \infty$?

