MATH 166
 SPRING 2004
 EXAM 1

1. (48 pt) Evaluate the following integrals:
a) $\int \frac{e^{x}}{\sqrt{e^{2 x}+6 e^{x}+13}} d x$
b) $\int e^{a x} \cos (b x) d x$
c) $\int \frac{4 x^{3}+4 x^{2}+3 x+1}{\left(x^{2}+x\right)\left(x^{2}+1\right)} d x$
d) $\int_{1}^{4} \sqrt{x} e^{\sqrt{x}} d x$
e) $\int \frac{d x}{\sqrt{x}-\sqrt[4]{x}}$
f) $\int_{-R}^{R}(\sin (x)-1) \sqrt{R^{2}-x^{2}} d x$
2. (12 pt) Suppose that you revolve the upper half of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a, b>0)$ about the x-axis. What is the resulting volume? What happens if $a=b$?
3. (18 pt) Consider the curves $\sin (a x)$ and $\cos (a x), a>0$.
a) Find the area between the curves from $x=0$ to their first point of intersection.
b) Find the average vertical distance between these curves from $x=0$ to their first point of intersection.
c) Find the volume obtained when the part of the region bounded by the curves from (from $x=0$ to their first point of intersection) is revolved about the line $x=\frac{\pi}{4 a}$.
4. (12 pt) You haul a 10 pound bucket 30 feet up a well. You begin with 100 pounds of water in the bucket, but it is leaking in such a way that you lose 2 pounds of water for every foot that you pull it up. If the rope weighs $\frac{1}{2}$ of a pound per foot, how much work is done in bringing the bucket of water to the top of the well?
5. (10 pt) Let $f(x)$ be a continuous, one to one function. Show that

$$
\int_{f(a)}^{f(b)} f^{-1}(x) d x=b f(b)-a f(a)-\int_{a}^{b} f(u) d u
$$

Use this to calculate

$$
\int_{1}^{3} g(x) d x
$$

where $g(x)$ is the inverse function of $y=x^{3}+x+1$.
6. (10 pt) Consider a right regular pyramid with a square base. Suppose that the length of one side of the square base of the pyramid is a and height of the pyramid is h. Find the volume of this pyramid.

