MATH 166

SPRING 2007
EXAM 1

1. (40 pt) Evaluate the following integrals:
a) $\int \frac{x^{2}}{x^{2}+2 x+5} d x$
b) $\int x \tan ^{-1}\left(x^{2}+1\right) d x$
c) $\int \frac{2 x^{5}+4 x^{3}+2 x-1}{x^{2}\left(x^{2}+1\right)} d x$
d) $\int \frac{d x}{4 \cos (x)+5}$
e) $\int_{2 R}^{3 R} \sqrt{x^{2}-2 R x} d x, R>0$
2. (24 pt) Consider the curves $f(x)=x-x^{2}$ and $g(x)=m x, 0<m<1$.
a) Find the volume obtained when the region bounded by $f(x)=x-x^{2}$ and the x-axis is revolved about the y-axis.
b) Find the area of the region bounded by $f(x)$ and $g(x)$. What happens to the formula you get when $m=0$ and $m=1$? Briefly explain.
c) Find the value of m so that the volume obtained when the region bounded by $f(x)$ and $g(x)$ is revolved about the y-axis is exactly half of the volume obtained in part a).

3. (10 pt) Let a be a constant. Find all differentiable functions with the property that $f(x)$ is equal to the average value of $f(x)$ on the interval $[a, x](x>a)$.
4. (12 pt) A particle moves through a force field where the force on the particle at any point $x>0$ is given by $f(x)=\frac{x^{2}-2 x+2}{x}$. Find value(s) of a such that the work done as the particle moves from a to $2 a$ is minimal.
5. (12 pt) Use integration by parts to find $\int \sec ^{2 n+1}(x) d x$ in terms of $\int \sec ^{2 n-1}(x) d x$ (where n is an integer greater than or equal to 1). Apply this formula to find

$$
\int \sec ^{5}(x) d x
$$

6. (12 pt) A pyramid with square base of length $R>0$ has its top removed. The new truncated pyramid is h units tall and the side length of the new square top is $r \geq 0$. Find the volume of this solid. What does your formula say when $r=0$ and when $r=R$? Does this make sense?
