MATH 166

SPRING 2008
EXAM 1

1. $(50 \mathrm{pt})$ Evaluate the following integrals:
a) $\int \sin (x) \sqrt{\cos ^{2}(x)+4} d x$
b) $\int e^{x} \sin (x) \cos (x) d x$
c) $\int \frac{x^{6}+3 x^{4}+x^{3}+2 x^{2}-1}{x^{6}+2 x^{4}+x^{2}} d x$
d) $\int_{0}^{\frac{1}{2}} \sin ^{-1}(x) d x$
e) $\int_{1}^{3} \frac{1}{4 x-x^{2}} d x$
2. (8 pt) The amount of force exerted on a rocket ship of mass m on a planet of mass M is given by the formula

$$
F=\frac{G M m}{R^{2}}
$$

where G is the gravitational constant of the universe and R is the distance from the center of the planet. If the radius of the planet is R_{0}, find the work required for the rocket to "blast" to a distance, D from the center of the planet. What happens to your answer as $D \longrightarrow \infty$?
3. (10 pt) Let $y=f(x)$ be a positive function, $a \geq 0$ be a constant, and let \mathfrak{R} be the region bounded by $f(x), x=t(t>0)$, the x-axis, and the y-axis. Suppose that for every positive value of t, the volume obtained when this region \mathfrak{R} is revolved about the x-axis is precisely the same as the volume obtained when \mathfrak{R} is revolved about the line $x=-a$. Find $f(x)$.
4. (24 pt) Consider the quarter of the circle $x^{2}+y^{2}=R^{2}(R>0)$ that lies in the first quadrant and the line $y=m x$, with $m \geq 0$.
a) Find the volume obtained when the region in the first quadrant bounded by the x-axis, the circle, and $y=m x$ is revolved about the y-axis.
b) What happens to your answer from a) as $m \longrightarrow \infty$ (and does this make sense)?
c) Find the volume obtained when the region in the first quadrant bounded by the x-axis, the circle, and $y=m x$ is revolved about the x-axis.
d) What happens to your answer from c) as $m \longrightarrow \infty$ (and does this make sense)?
5. (10 pt) A trough L units long is placed on the ground. The ends of the trough look like trapezoid with the parallel sides (bottom and top respectively) of lengths a and b. The height of the trapezoid is h. If the trough is filled with a liquid of density ρ, how much work is required to pump all of the fluid out of a spigot that is k units above the top of the trough?
6. (8 pt) Suppose that $f(x)$ has $y=c$ as a horizontal asymptote to the right $\left(\lim _{x \rightarrow \infty} f(x)=c\right)$. Let $A(x)$ denote the average value of the function $f(x)$ on the interval $[a, x]$ (where a is constant). Find $\lim _{x \rightarrow \infty} A(x)$.

