MATH 166

SPRING 2009
EXAM 1

1. (50 pt) Evaluate the following integrals:
a) $\int(\ln (x))^{3} d x$
b) $\int_{0}^{a} \frac{x^{2}}{\left(x^{2}+a^{2}\right)^{\frac{3}{2}}} d x$
c) $\int \frac{4 e^{4 x}+2 e^{3 x}+45 e^{2 x}+81}{\left(e^{2 x}+9\right)^{2} e^{x}} d x$
d) $\int \sin (a x) \cos (b x) d x$
e) $\int_{0}^{1} \tan ^{-1}(x) d x$
2. (12 pt) A bucket weighing a pounds contains b pounds of water. It is hauled up a D foot shaft by a rope that weighs c pounds per foot. Find a formula that tells how much work is done in hauling this bucket of water up the shaft.
3. (6 pt) Let $f(x)$ be a positive, continuous, periodic function of period P (so for all x, we have that $f(x+P)=f(x))$. Let \mathfrak{R}_{1} be the region bounded by $y=f(x), y=0, x=0$, and $x=P$ and let \mathfrak{R}_{2} be the region bounded by $y=f(x), y=0, x=P$, and $x=2 P$. Find the volume of the region obtained when \mathfrak{R}_{2} is revolved about the line $x=-P$ in terms of V and A where A is the area of the region \mathfrak{R}_{1} and V is the volume obtained when \mathfrak{R}_{1} is revolved about the y-axis.
4. Consider the ellipse $\frac{(x-R)^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ which is "centered" at $(R, 0)$ where $R \geq a$.
a) $(8 \mathrm{pt})$ Find the volume obtained when the upper half is revolved about the x-axis.
b) (8 pt) Find the volume obtained when this ellipse is revolved about the y-axis.
c) (5 pt) What relationship between b and R is required for the answers in parts a) and b) to be the same?
5. (15 pt) Suppose that a conical shaped pool is built into the ground of radius R and height (depth) h. Show that the amount of work done in pumping all of the water out of the pool is given by $W=\frac{1}{4} F h$ where F is the weight of the water in the pool. The volume of a cone is given by $V=\frac{1}{3} \pi R^{2} h$ where R is the base radius and h is the height.
6. (6 pt) Imitate the slicing procedure for finding volumes to obtain the volume of a four dimensional sphere of radius R (hint: set up an axis and instead of circles being at every point, assume it is spheres...the volume of a 3 dimensional sphere of radius r is given by $\left.V=\frac{4}{3} \pi r^{3}\right)$.
