MATH 166
 SPRING 2010
 EXAM 1

1. (50 pt$)$ Evaluate the following integrals:
a) $\int_{0}^{1} \frac{x^{3}}{\left(4-3 x^{2}\right)^{\frac{3}{2}}} d x$
b) $\int \cos (\ln (x)) d x$
c) $\int \frac{1}{\sqrt{x^{2}+2 R x+2 R^{2}}} d x, R>0$
d) $\int \frac{d \theta}{3 \cos (\theta)+4 \sin (\theta)}$
e) $\int_{0}^{\ln (2)}\left(x^{2}+x\right) e^{x} d x$
2. (15 pt) Find the volume obtained when the region bounded by the x-axis and $f(x)=a x(1-x)$ is revolved about the line $x=3$.
3. (12 pt) An hourglass is made by revolving $f(x)=|a \sin (x)|, 0 \leq x \leq 2 \pi$ about the x-axis. Find the value of a so that the upper chamber of the hourglass can hold 2π cubic units of sand.
4. (10 pt) A wedge is created by slicing a half cylinder of radius R with a plane at angle θ $\left(0 \leq \theta<\frac{\pi}{2}\right)$. Find the volume of this object.
5. (15 pt) We define the function

$$
g(x)=\frac{1}{x-a} \int_{a}^{x} f(t) d t, x>a
$$

where $f(x)$ is continuous.
a) Show that if $g(x)$ has a critical number then it occurs at a point where $f(x)$ is equal to its mean value on $[a, x]$.
b) Evaluate $\lim _{x \rightarrow a} g(x)$.
c) Suppose that $f(x)$ has $y=m$ as a horizontal asymptote. Evaluate $\lim _{x \rightarrow \infty} g(x)$ (you may assume that $\left.\lim _{x \rightarrow \infty} \int_{a}^{x} f(x) d x=\infty\right)$.
6. (8 pt) A water storage tank is in the shape of a circular cylinder of radius R and height h (both measuerd in feet). This tank is buried on its side (horizontal position) D feet below the ground. If water weighs ρ pounds per cubic foot find the work done in pumping the water out of the tank through a spigot that is a feet above the ground.

