MATH 166
 SPRING 2011
 EXAM 1

1. (50 pt$)$ Evaluate the following integrals:
a) $\int \frac{\ln \left(\tan ^{-1}(x)\right)}{x^{2}+1} d x$
b) $\int \frac{e^{3 x}}{\sqrt{e^{2 x}-1}} d x$
c) $\int_{-2}^{0} \sqrt{5-8 x-2 x^{2}} d x$
d) $\int \frac{d \theta}{\csc (\theta)-1}$
e) $\int_{0}^{\frac{1}{a}} x \sin ^{-1}(a x) d x, a>0$
2. (15 pt) Find the volume obtained when the right half of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a, b>0)$ is revolved about the y-axis. What happens if $a=b$?
3. (15 pt) Consider the region in the first quadrant bounded by the upper half of the circle $x^{2}+y^{2}=R^{2}$, the line $y=(\tan (\theta)) x$ and the x-axis. Find the volume obtained when this region is revolved about the x-axis. What happens as $\theta \longrightarrow 0$ and what happens as $\theta \longrightarrow \frac{\pi}{2}$?
4. (12 pt) A monument is to be constructed in the shape of a truncated pyramid. The cross sections parallel to the ground are squares and the base square has side length b and the top has side length $a(b \geq a \geq 0)$. The pyramid has height $h>0$ and all lengths are measured in feet. If the concrete used to make the monument weighs ρ pounds per cubic foot, find the work done in building this monument.
5. (10 pt) Consider the triangle bounded by the x-axis, the y-axis, and the line $y=1-x$. Find the volume obtained when this region is revolved about the line $y=-x$.
6. (8 pt) Let $f(x)$ be a continuous, periodic function of period $T>0$ (this means that $f(x+T)=$ $f(x)$ for all $x)$.
a) Show that for all real numbers a, we have that $\int_{a}^{a+T} f(x) d x=\int_{0}^{T} f(x) d x$.
b) Show that if $f(x)$ is additionally assumed to be odd, then the average value of $f(x)$ on $[a, a+T]$ is 0 for all real numbers a.
