MATH 166

SPRING 2003

EXAM 2

1. $(32 \mathrm{pt})$ Evaluate the following integrals:
a) $\int_{0}^{\infty} \frac{\cos (x)}{1+\sin ^{2}(x)} d x$
b) $\int_{-\infty}^{-1} \frac{d x}{\sqrt{x^{2}+1}}$
c) $\int_{-\infty}^{\infty} e^{-|x|} d x$
d) $\int_{-\infty}^{\infty} f(x) d x$ where $f(x)= \begin{cases}\left|\frac{1}{\sqrt[3]{x}}\right|, & \text { if } 0<|x| \leq 1 ; \\ \frac{2}{x^{2}+1}, & \text { if } 1<|x| .\end{cases}$
2. (8 pt) Suppose that you have a function $f(x)$. Let $g(x)=\int_{0}^{x} f(t) d t$ and let $F(x)$ be an antiderivative of $g(x)$. and you know that $-6<f^{(4)}(x) \leq 4$ for all $1 \leq x \leq 5$ and $-3 \leq f^{\prime \prime}(x) \leq 2$. Find the smallest value of n for which the error of Simpson's rule used in estimating $\int_{1}^{5} F(x) d x$ is less than $\frac{1}{81}$.
3. (20 pt) Consider the region between the curves $f(x)=4 x$ and $g(x)=x^{2}$.
a) Find the length of the boundary of this region.
b) Find the surface area of the solid generated when this region is revolved about the y-axis.
4. (24 pt) Consider the region bounded by the function $f(x)=\sin (a x), 0 \leq x \leq \frac{\pi}{a}$ and the x-axis.
a) Find the centroid of this region.
b) Find the volume obtained when this region is revolved about the x-axis.
c) Find the volume obtained when this region is revolved about the y-axis.
d) For what value(s) of a do the two volumes coincide?
5. (10 pt) Find the surface area generated when the curve $f(x)=e^{-x}, x \geq 0$ is revolved about the x-axis.
6. (8 pt) Find the force due to hydrostatic pressure on the side of a glass aquarium if the side is rectangular of width w and height h. You may assume that the aquarium is filled to the top and that water weighs 62.5 pounds per cubic foot.
7. (8 pt) Find the volume of a "hollowed torus" that is obtained from revolving an annulus of inner radius r and outer radius R about an axis (assume that this axis is a units from the center of the annulus where $a \geq R$). Use your result to obtain the volume of a solid torus. Then obtain the surface area of the solid torus.

