MATH 166

SPRING 2007

EXAM 2

1. $(30 \mathrm{pt})$ Evaluate the following integrals if they exist.
a) $\int_{0}^{\infty} \frac{d x}{\sqrt{x}(x+1)}$
b) $\int_{0}^{1} \frac{d x}{x(\ln (x))^{2}}$
c) $\int_{-\infty}^{-2} \frac{2}{x^{2}-1} d x$
2. Let k be a constant.
a) (6 pt) Show that the integral $\int_{-\infty}^{\infty} x d x$ diverges.
b) $(6 \mathrm{pt})$ Find a function, $f(t)$, satisfying

$$
\lim _{t \rightarrow \infty} f(t)=\infty
$$

and

$$
\lim _{t \rightarrow \infty} \int_{-t}^{f(t)} x d x=k
$$

3. Let $f(x)$ be a non-decreasing function with a continuous derivative.
a) (6 pt) Show that $\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \leq \int_{a}^{b} \sqrt{1+2 f^{\prime}(x)+\left(f^{\prime}(x)\right)^{2}} d x$.
b) (6 pt) Use part a) to show that if L is the arclength of $f(x)$ from a to b then

$$
L \leq(b-a)+(f(b)-f(a)) .
$$

4. (15 pt) Find the surface area obtained when the upper half of the ellipse $\frac{x^{2}}{4}+y^{2}=1$ is revolved about the x-axis.
5. A rectangular window of width w and height h on an aquarium is submerged so that the top is D units below the surface of the liquid. You may assume that the pressure is given by $P=k d$ where k is a constant and d is the depth beneath the surface.
a) (10 pt) Find a formula for the force due to hydrostatic pressure acting on the window.
b) (5 pt) If $D=0$ and w remains constant, how much do we have to increase h to double the force on the window?
6. Consider the region bounded by the functions $y=m x, m \geq 0$ and $y=x-x^{2}$.
a) $(6 \mathrm{pt})$ Find a formula for the area of this region.
b) (6 pt) Find the value(s) of m for which the y-coordinate of the centroid is maximal.
c) (6 pt) For the value(s) of m found in part b), find the volume obtained when the region is revolved about the x-axis.
7. (8 pt) Suppose that you want to approximate

$$
\int_{a}^{b}\left(A x^{4}+B x^{3}+C x^{2}+D x+E\right) d x
$$

using Simpson's rule. Show that the error in using Simpson's rule is never more than $\frac{|A|}{120} L^{5}$, where L is the length of the interval of integration.

