MATH 166
 SPRING 2009
 EXAM 2

1. $(40 \mathrm{pt})$ Evaluate the following integrals if they exist:
a) $\int_{0}^{\infty}\left(x-\sqrt{x^{2}+1}\right) d x$
b) $\int_{-\infty}^{\infty} \frac{e^{-\sqrt[3]{|x|}}}{x^{\frac{2}{3}}} d x$
c) $\int_{-R}^{R} \frac{d x}{\sqrt{R^{2}-x^{2}}}$
d) $\int_{-e}^{e^{2}} \frac{(\ln (|t|))^{n} d t}{t}, n>0$
2. (20 pt) Let $a>0$ be a fixed constant. Find all values of $b(a \geq b \geq 0)$ such that the centroid of the region bounded by $f(x)=a x(1-x)$ and $g(x)=b x(1-x), 0 \leq x \leq 1$ is actually in the region.
3. (8 pt) Show that the substitution $x=\tan (\theta)$ converts the integral

$$
\int_{1}^{\infty} \frac{\sqrt{x^{2}+1}}{x^{n}} d x, n \text { an integer greater than } 2
$$

to a proper integral (and hence the integral converges).
4. (15 pt) Find the surface area obtained when $f(x)=\sin (n x)$, where n is a positive integer and $0 \leq x \leq \frac{\pi}{n}$ is revolved about the x-axis. What happens to your answer as $n \longrightarrow \infty$ (does this make sense)?
5. (8 pt) Find a such that the length of the curve $f(x)=x^{3}$ on the interval $[a, a+k]$ (where $k>0$ is a fixed constant) starting at a is minimized.
6. (12 pt) Find the force due to hydrostatic pressure on the side of a trough of length L if the end is a semicircle of radius R and it is filled to the top with a fluid of density ρ.
7. (7 pt) Explain the construction behind Simpson's Rule and why the value of n must always be even.

