MATH 166
 SPRING 2010
 EXAM 2

1. (40 pt) Evaluate the following integrals:
a) $\int_{0}^{\sqrt{13}} \frac{2 x}{\sqrt[3]{x^{2}-4}} d x$
b) $\int_{0}^{\infty} \frac{\ln (|x|)}{x} d x$
c) $\int_{0}^{\infty} \frac{2 e^{2 x}}{1+e^{4 x}} d x$
d) $\int_{-\infty}^{\pi} \cos (x) e^{\sin (x)} d x$
2. (15 pt) Find the length of the curve $f(x)=\int_{\frac{\pi}{4}}^{x} \sqrt{\tan ^{2}(t)-1} d t, \frac{\pi}{4} \leq x \leq \frac{\pi}{3}$.
3. (15 pt) Consider the region in the upper half plane ($y \geq 0$) bounded by the semicircles $y=$ $\sqrt{R^{2}-x^{2}}$ and $y=\sqrt{r^{2}-x^{2}}$ with $R>r$. Locate the centroid of this region. For what value(s) of r (in terms of R) is the centroid located on the circle $y=\sqrt{r^{2}-x^{2}}$?
4. (10 pt) Let $n \geq 1$. Show that the surface area obtained when the function $f(x)=x^{n}, 0 \leq x \leq 1$ is revolved about the x-axis is precisely the same as when the function $f(x)=x^{\frac{1}{n}}, 0 \leq x \leq 1$ is revolved about the y-axis.
5. (15 pt) A submerged window is in the shape of an equilateral triangle of side length a. The window has one of the vertices pointing straight down (so it has a flat top). If the pressure is ρ times the depth and the top of the window is D feet below the surface, find the force due to hydrostatic pressure on the window.
6. (15 pt) Consider the function $f(x)=\int_{0}^{x} e^{-t^{2}} d t$ and let $g(x)$ be its antiderivative. Suppose that I want to integrate this function on from 0 to 2 . Find the appropriate values of K for the midpoint rule and for Simpson's rule.

Formulae

(1) $\sin (2 x)=2 \sin (x) \cos (x)$
(2) $\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)$
(3) $\cos ^{2}(x)=\frac{1}{2}+\frac{1}{2} \cos (2 x)$
(4) $\sin ^{2}(x)=\frac{1}{2}-\frac{1}{2} \cos (2 x)$
(5) $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
(6) $\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$
(7) $\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$
(8) $\left|E_{M}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}}$
(9) $\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}}$
(10) $\left|E_{S}\right| \leq \frac{K(b-a)^{5}}{180 n^{4}}$
(11) Force $=($ pressure $)$ (area) and pressure $=\rho$ (depth).
(12) $L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$
(13) $S=\int_{a}^{b} 2 \pi(x$ or $y) d s$
(14) $\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x$
(15) $\bar{x}=\frac{1}{A} \int_{a}^{b} x(f(x)-g(x)) d x$
(16) $\bar{y}=\frac{1}{2 A} \int_{a}^{b}\left[(f(x))^{2}-(g(x))^{2}\right] d x$
(17) $A=\int_{a}^{b} \frac{1}{2} r^{2} d \theta$
(18) $\int \sec (x) d x=\ln |\sec (x)+\tan (x)|+c$
(19) $\int \sec ^{3}(x) d x=\frac{1}{2} \sec (x) \tan (x)+\frac{1}{2} \ln |\sec (x)+\tan (x)|+c$

