MATH 166
 SPRING 2013
 EXAM 2

1. (40 pt$)$ Evaluate the following integrals if they exist:
a) $\int_{0}^{\infty} \frac{\cos (x)}{\sin ^{2}(x)+1} d x$
b) $\int_{0}^{9} \frac{1}{\sqrt[3]{x^{2}-2 x+1}} d x$
c) $\int_{1}^{\infty} \frac{\ln (x)}{x^{p}} d x, p>1$
d) $\int_{0}^{\infty} \frac{a^{2}}{\left(x^{2}+a^{2}\right)^{\frac{3}{2}}} d x$
2. $(20 \mathrm{pt})$ Consider the function $f(x)=a^{2} x\left(\frac{1}{a}-x\right)$.
a) Find the length of this curve $0 \leq x \leq \frac{1}{a}$.
b) What happens as $a \longrightarrow \infty$?
c) What is the surface area obtained when this curve $\left(0 \leq x \leq \frac{1}{a}\right)$ is revolved about the x-axis?
d) What happens as $a \longrightarrow \infty$?
3. (10 pt) Suppose you have a function $F(x)$ and you want to use Simpson's rule to estimate $\int_{0}^{4} F(x) d x$. You know that $F^{\prime \prime}(x)=\int_{0}^{x} \ln \left(t^{2}+1\right) d t$. How many terms do you need if you want to guarantee that the error obtained in approximating $\int_{0}^{4} F(x) d x$ is strictly less than $\frac{1}{720}$?
4. (10 pt) In this problem, we ultimately want to find $\lim _{a \rightarrow \infty} \int_{0}^{\frac{1}{a}} \sqrt{1+a^{2} e^{2 a x}} d x$.
a) Find a function and an interval so that $\int_{0}^{\frac{1}{a}} \sqrt{1+a^{2} e^{2 a x}} d x$ represents the length of this function on that interval.
b) Use part a) (or any other method) to evaluate $\lim _{a \rightarrow \infty} \int_{0}^{\frac{1}{a}} \sqrt{1+a^{2} e^{2 a x}} d x$.
5. (10 pt) A tank is made by revolving the right half of parabola $y=x^{2}, 0 \leq x \leq \sqrt{h}$ about the y-axis. If this tank is filled with a fluid of density ρ, find the force due to hydrostatic pressure on the tank.
6. (20 pt) Consider the region bounded by the x-axis and the function $f(x)=\sin (x), 0 \leq x \leq \pi$.
a) Locate \bar{x}.
b) Locate \bar{y}.
c) Find the volume obtained when this region is revolved about the x-axis.
d) Find the volume obtained when this region is revolved about the y-axis.
(1) $\sin (2 x)=2 \sin (x) \cos (x)$
(2) $\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)$
(3) $\cos ^{2}(x)=\frac{1}{2}+\frac{1}{2} \cos (2 x)$
(4) $\sin ^{2}(x)=\frac{1}{2}-\frac{1}{2} \cos (2 x)$
(5) $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
(6) $\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$
(7) $\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$
(8) $\left|E_{M}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}}$
(9) $\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}}$
(10) $\left|E_{S}\right| \leq \frac{K(b-a)^{5}}{180 n^{4}}$
(11) $L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$
(12) $S=\int_{a}^{b} 2 \pi(x$ or $y) d s$
(13) $\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x$
(14) $\bar{x}=\frac{1}{A} \int_{a}^{b} x(f(x)-g(x)) d x$
(15) $\bar{y}=\frac{1}{2 A} \int_{a}^{b}\left[(f(x))^{2}-(g(x))^{2}\right] d x$
(16) $A=\int_{a}^{b} \frac{1}{2} r^{2} d \theta$
(17) $\int \sec (x) d x=\ln |\sec (x)+\tan (x)|+c$
(18) $\int \sec ^{3}(x) d x=\frac{1}{2} \sec (x) \tan (x)+\frac{1}{2} \ln |\sec (x)+\tan (x)|+c$
(19) $\int \sec ^{5}(x) d x=\frac{1}{4} \sec ^{3}(x) \tan (x)+\frac{3}{8} \sec (x) \tan (x)+\frac{3}{8} \ln (|\sec (x)+\tan (x)|)+c$
(20) $\int \csc (x) d x=\ln |\csc (x)-\cot (x)|+c$
(21) $\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}$
