MATH 166
 SPRING 2003
 EXAM 3

1. $(18 \mathrm{pt})$ Determine if the following sequences converge or diverge.
a) $\left\{\frac{\tan ^{-1}(\sin (n))}{2 n+1}\right\}_{n=0}^{\infty}$
b) $\left\{a_{1}, a_{1}+a_{2}, \cdots, a_{1}+a_{2}+\cdots+a_{n}, \cdots\right\}$ where $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\frac{3}{4}$
c) $\left\{a_{n}\right\}_{n=1}^{\infty}$ where $a_{n}=f(n)$ with $f^{\prime}(x)<0$ and $f(x)>0$.
2. (36 pt) Determine if the following series converge or diverge.
a) $\sum_{n=1}^{\infty} \frac{\ln (n)}{\ln \left(n^{2}+1\right)}$
b) $\sum_{n=0}^{\infty} \frac{\sqrt[3]{2 n^{3}+n}}{\sqrt[3]{n^{7}+n^{6}+3}}$
c) $\sum_{n=2}^{\infty} \frac{\left(3 n^{3}+1\right)^{2 n}}{\left(2 n^{2}+1\right)^{3 n}}$
d) $\sum_{n=0}^{\infty} \frac{(n!)^{3}}{(3 n)!}$
e) $\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{n!}$
f) $\sum_{n=0}^{\infty} \frac{n \cos \left(n^{2}\right)}{n^{3}+1}$
3. (18 pt) Suppose that the power series $\sum_{n=0}^{\infty} a_{n} x^{2 n}$ has radius of convergence equal to nine. Find the following.
a) The radius of convergence of the series $\sum_{n=0}^{\infty} a_{n} x^{n}$.
b) The radius of convergence of the series $\sum_{n=0}^{\infty} \sqrt{a_{n}} x^{2 n}$.
c) $\lim _{n \rightarrow \infty}\left(64^{n} a_{n}\right)$.
4. (8 pt) Find the center, radius, and interval of convergence for the power series

$$
\sum_{n=1}^{\infty} \frac{n(3 x-2)^{n}}{\left(n^{2}+1\right) 3^{2 n}}
$$

5. (8 pt) Find the Maclaurin series for the function $f(x)=\tan ^{-1}\left(x^{2}\right)$.
6. (12 pt) Consider the function $f(x)=\cos \left(x^{2}\right)$.
a) Find the Maclaurin series for $f(x)$.
b) Use your result from a) to find an infinite series for $\int_{0}^{\frac{1}{10}} \cos \left(x^{2}\right) d x$.
c) How many terms from this series are necessary so that the approximation $s \approx s_{n}$ has error less than $\frac{1}{1,000,000}$?
7. (10 pt) It is known that $\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1}=\frac{\pi}{4}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$. The questions below involve using the approximation $s \approx s_{n}$.
a) How many terms of $\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1}$ are needed to estimate $\frac{\pi}{4}$ with error less than or equal to $\frac{1}{100}$?
b) How many terms of $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ are needed to estimate $\frac{\pi^{2}}{6}$ with error less than or equal to $\frac{1}{100}$?
