MATH 166

SPRING 2004

EXAM 3

1. (42 pt) Determine if the following series converge or diverge.
a) $\sum_{n=1}^{\infty} \frac{\sqrt[3]{2 n^{3}+n}}{\sqrt{n^{5}+\sin (n)}}$
b) $\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right)$
c) $\sum_{n=3}^{\infty} \frac{1}{n \ln (n)}$
d) $\sum_{n=1}^{\infty} \frac{(4 n)!}{17^{n}((2 n)!)^{2}}$
e) $\sum_{n=1}^{\infty}(-1)^{n} \frac{\tan ^{-1}(n)}{n+1}$
f) $\sum_{n=1}^{\infty} a_{n}$, where the partial sums are given by $s_{n}=n \sin \left(\frac{3}{2 n}\right)$.
2. (12 pt) Determine if the following sequences converge or diverge.
a) $\left\{a n \tan \left(\frac{b}{c n}\right)\right\}_{n=1}^{\infty}, c \neq 0$
b) $\left\{e^{-s_{n}}\right\}_{n=1}^{\infty}$, where s_{n} is the $n^{\text {th }}$ partial sum of a positive term series.
3. (12 pt) Suppose that $\sum_{n=0}^{\infty} a_{n}$ is a positive term series.
a) Show that if $\sum_{n=0}^{\infty} a_{n}$ converges then so does $\sum_{n=0}^{\infty} a_{n}^{2}$.
b) Show that if $\lim _{n \rightarrow \infty} a_{n}=0$ then $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} \sin \left(a_{n}\right)$ both converge or both diverge.
4. (16 pt) Consider the two convergent series $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{n(\ln (n))^{2}}$ and $\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{2}}$.
a) Show that 18 terms is (more than) enough so the the approximation $s \approx s_{n}$ for the series $\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{n(\ln (n))^{2}}$ has error less than or equal to $\frac{1}{100}$ (hint: $\ln (20)>\sqrt{5}$).
b) How many terms are needed so that the approximation $s \approx s_{n}$ for the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{2}}$ has error less than or equal to $\frac{1}{100}$?
5. (12 pt) Find the center, radius, and interval of convergence of the power series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln (n)(x+1)^{3 n}}{(n+1) 27^{n}}
$$

6. (8 pt) Find a Maclaurin series for $f(x)=\tan ^{-1}\left(2 x^{2}\right)$ and use this series to estimate $\int_{0}^{\frac{1}{2}} \tan ^{-1}\left(2 x^{2}\right) d x$ with error less than or equal to $\frac{1}{1000}$.
7. (8 pt) Suppose that the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges on the interval $(-R, R)$ (that is, the series has radius of convergence $R>0$).
a) What is the radius of convergence of the series $\sum_{n=0}^{\infty} a_{n}\left(A x^{k}\right)^{n}$ (where k is a positive integer and A is nonzero)?
b) For what values of x does the infinite series $\sum_{n=0}^{\infty} a_{n}\left(\frac{1}{x}\right)^{n}$ converge?
