MATH 166

SPRING 2005

EXAM 3

1. (42 pt) Determine if the following series converge or diverge.
a) $\sum_{n=1}^{\infty} \frac{n^{2}}{\sqrt{3 n^{5}+2 n^{3}+n^{2}+12}}$
b) $\sum_{n=1}^{\infty} \frac{n}{e^{n}}$
c) $\sum_{n=0}^{\infty} \frac{2^{n}(n!)^{2}}{(2 n)!}$
d) $\sum_{n=1}^{\infty}(\sqrt[n]{3}-\sqrt[n]{2})^{2 n}$
e) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n \ln (n)}{n^{2}+1}$
f) $\sum_{n=1}^{\infty} a_{n}$, where the partial sums are given by $s_{n}=\frac{n+2}{2 n}$.
2. (10 pt) Determine if the following sequences converge or diverge.
a) $\left\{\frac{n^{2}+n \tan ^{-1}(n)}{n^{2}+1}\right\}_{n=1}^{\infty}$
b) $\{|\sin (x)|, \sin (|\sin (x)|), \sin (\sin (|\sin (x)|)), \cdots\}$ (Hint: if $0 \leq \theta \leq \frac{\pi}{2}$ then $0 \leq \sin (\theta) \leq \theta$.)
3. (15 pt) Consider the function

$$
f(x)=\left\{\begin{array}{l}
2 x-\pi+1, \text { if } x \geq \frac{\pi}{2} \\
\sin (x), \text { if } x<\frac{\pi}{2}
\end{array}\right.
$$

a) Find the Maclaurin series for $f(x)$ and determine its radius of convergence.
b) Find the Taylor series centered for $f(x)$ centered at π and determine its radius of convergence.
c) Is $f(x)$ equal to either of the series above for all x ? Explain.
4. Let $f(x)$ be a function that is equal to its Taylor series (with an infinite radius of convergence) centered at any point a.
a) $(8 \mathrm{pt})$ Show that

$$
f(0)=\sum_{n=0}^{\infty}(-1)^{n} \frac{f^{(n)}(a)}{n!} a^{n} .
$$

b) (5 pt) Use the above formula with $f(x)=\cos (x)$ to show that $1=\cos ^{2}(a)+\sin ^{2}(a)$ (hint: write your series as two series consisting of the even and odd powers of a and regroup).
5. (12 pt) Find the center, radius, and interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{\sqrt{(n+1)}(x+1)^{2 n}}{9^{n} n^{3}}
$$

6. (10 pt) Consider the function $f(x)=\sin \left(\frac{1}{x^{2}}\right)$.
a) Use the MacLaurin series for $\sin (x)$ to find a series for $f(x)$.
b) Use your answer from a) to estimate $\int_{1}^{\infty} \sin \left(\frac{1}{x^{2}}\right) d x$ with error less than or equal to $\frac{1}{500}$.
7. (8 pt) Consider the $p-\operatorname{series} \sum_{n=1}^{\infty} \frac{1}{n^{p}}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots$. We will assume that $p>1$ (so the series converges). Note that no matter what p is, the first term of the series is 1 . What is the smallest value of p such that the estimate $s \approx 1$ has error less than or equal to $\frac{1}{1000}$.
