MATH 166 SPRING 2006 EXAM 3

1. (36 pt) Determine if the following series converge or diverge.

a)
$$\sum_{n=1}^{\infty} \frac{n^3}{\sqrt{n^7 + 1}}$$
 b) $\sum_{n=1}^{\infty} n^2 \sin(\frac{1}{n^4})$ c) $\sum_{n=0}^{\infty} \frac{28^n (n!)^3}{(3n)!}$ d) $\sum_{n=1}^{\infty} \frac{(2n^2 + 1)^{3n}}{(3n^3 - 1)^{2n}}$
e) $\sum_{n=2}^{\infty} (-1)^n \frac{\ln(\ln(n))}{\ln(n)}$ f) $\sum_{n=1}^{\infty} \sin(a_n)$, where $\sum_{n=1}^{\infty} a_n$ is a convergent, positive term series.

2. (12 pt) Determine if the following sequences converge or diverge.

a)
$$\left\{ n \tan\left(\frac{1}{n}\right) \right\}_{n=1}^{\infty}$$

b) $\left\{ a_n \right\}_{n=1}^{\infty}$ where $a_1 = 1$ and $a_{n+1} = 3 - \frac{1}{a_n}$ for $n \ge 1$.

3. (15 pt) Suppose that the power series $\sum_{n=0}^{\infty} a_n x^n$ has interval of convergence [-R, R] (R > 0) and that the series converges absolutely at the endpoints. Find the interval of convergence of the series

$$\sum_{n=0}^{\infty} \frac{a_n}{n+1} (ax-b)^{cn}$$

where $a \neq 0$ and c is a positive integer.

- 4. Let R > 0 and suppose that $\sum_{n=0}^{\infty} a_n x^n$ converges if |x| < R and diverges if |x| > R.
 - a) (10 pt) Show that $\sum_{n=0}^{\infty} a_n(\frac{1}{x})^n$ converges for $|x| > \frac{1}{R}$ and diverges for $|x| < \frac{1}{R}$.
 - b) (5 pt) Suppose that f(x) is equal to its Maclaurin series and has the property that $f(x) = f(\frac{1}{x})$ for all $x \neq 0$. Explain why if R > 1, then f(x) is continuous everywhere and if R = 1 then f(x) has at most two discontinuities. What happens if R < 1?
- 5. (12 pt) Find the center, radius, and interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{(2n+1)}(3x-6)^{2n}}{9^n}.$$

6. (10 pt) Evaluate the following limit (you might try using a series).

$$\lim_{x \to 0} \frac{\sin(x^2) + e^{-x^2} - \cos(x^3)}{3x^4}$$

7. (10 pt) Estimate

$$\int_0^1 \frac{dx}{16 + x^4}$$

with error less than or equal to $\frac{1}{20000}$ (and explain how you come to your conclusions).