## MATH 166 <br> \section*{SPRING 2006}

## EXAM 3

1. $(36 \mathrm{pt})$ Determine if the following series converge or diverge.
a) $\sum_{n=1}^{\infty} \frac{n^{3}}{\sqrt{n^{7}+1}}$
b) $\sum_{n=1}^{\infty} n^{2} \sin \left(\frac{1}{n^{4}}\right)$
c) $\sum_{n=0}^{\infty} \frac{28^{n}(n!)^{3}}{(3 n)!}$
d) $\sum_{n=1}^{\infty} \frac{\left(2 n^{2}+1\right)^{3 n}}{\left(3 n^{3}-1\right)^{2 n}}$
e) $\sum_{n=2}^{\infty}(-1)^{n} \frac{\ln (\ln (n))}{\ln (n)} \quad$ f) $\sum_{n=1}^{\infty} \sin \left(a_{n}\right)$, where $\sum_{n=1}^{\infty} a_{n}$ is a convergent, positive term series.
2. (12 pt) Determine if the following sequences converge or diverge.

$$
\begin{aligned}
& \text { a) }\left\{n \tan \left(\frac{1}{n}\right)\right\}_{n=1}^{\infty} \\
& \text { b) }\left\{a_{n}\right\}_{n=1}^{\infty} \text { where } a_{1}=1 \text { and } a_{n+1}=3-\frac{1}{a_{n}} \text { for } n \geq 1
\end{aligned}
$$

3. ( 15 pt ) Suppose that the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ has interval of convergence $[-R, R](R>0)$ and that the series converges absolutely at the endpoints. Find the interval of convergence of the series

$$
\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(a x-b)^{c n}
$$

where $a \neq 0$ and $c$ is a positive integer.
4. Let $R>0$ and suppose that $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges if $|x|<R$ and diverges if $|x|>R$.
a) (10 pt) Show that $\sum_{n=0}^{\infty} a_{n}\left(\frac{1}{x}\right)^{n}$ converges for $|x|>\frac{1}{R}$ and diverges for $|x|<\frac{1}{R}$.
b) (5 pt) Suppose that $f(x)$ is equal to its Maclaurin series and has the property that $f(x)=f\left(\frac{1}{x}\right)$ for all $x \neq 0$. Explain why if $R>1$, then $f(x)$ is continuous everywhere and if $R=1$ then $f(x)$ has at most two discontinuities. What happens if $R<1$ ?
5. (12 pt) Find the center, radius, and interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{\sqrt[3]{(2 n+1)}(3 x-6)^{2 n}}{9^{n}}
$$

6. (10 pt) Evaluate the following limit (you might try using a series).

$$
\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)+e^{-x^{2}}-\cos \left(x^{3}\right)}{3 x^{4}}
$$

7. (10 pt) Estimate

$$
\int_{0}^{1} \frac{d x}{16+x^{4}}
$$

with error less than or equal to $\frac{1}{20000}$ (and explain how you come to your conclusions).

