MATH 166 SPRING 2008 EXAM 3

1. (42 pt) Determine if the following series converge of diverge.

a)
$$\sum_{n=1}^{\infty} \frac{n!(3n)!}{((2n)!)^2}$$
 b)
$$\sum_{n=1}^{\infty} (e^{\frac{1}{n^2}} - 1)$$
 c)
$$\sum_{n=1}^{\infty} (-1)^n (1 - n\sin(\frac{1}{n}))$$
 d)
$$\sum_{n=2}^{\infty} \frac{\sin(e^n)\cos(e^{n!})}{n^2\ln(n)}$$
 e)
$$\sum_{n=3}^{\infty} \frac{\sqrt[4]{n^k - 1}}{\sqrt[6]{n^j - 1}}, \text{ where } \frac{j}{b} - \frac{k}{a} > 1.$$
 f)
$$\sum_{n=2}^{\infty} \frac{(2\tan^{-1}(n!))^{2n}}{9^n}$$

2. (14 pt) Determine if the following sequences converge or diverge.

a)
$$\left\{ (-1)^n (1+\frac{1}{n})^n \right\}_{n=1}^{\infty}$$
 b) $\left\{ a_n \right\}_{n=1}^{\infty}$, where $a_1 = 1$ and $a_{n+1} = \frac{1}{3-a_n}$.

3. (16 pt) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ and $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^p}$, with p > 1 and let ϵ be a positive number. Suppose you want to know how many terms are necessary to estimate these series with error less than or equal to ϵ .

- a) Find a formula in terms of ϵ and p that indicates the number of terms necessary to approximate
- $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^p}$ with error less than or equal to ϵ . b) Find a formula in terms of ϵ and p that indicates the number of terms necessary to approximate $\sum_{n=1}^{\infty} \frac{1}{n^p}$ with error less than or equal to ϵ .
- 4. (12 pt) Find the center, radius, and interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{\ln(n+1)}{n2^{3n}} (4x+2)^{n+1}.$$

5. (10 pt) Consider the function $f(x) = e^{-x^2}$ and let F(x) be an antiderivative of f(x) such that F(0) = 1. Use a Maclaurin series to find

$$\int_0^{\frac{1}{2}} F(x) dx$$

with error less than $\frac{1}{2000}$.

6. (8 pt) Suppose that $\sum_{n=0}^{\infty} a_n$ is a positive term series. Show that if it can be successfully limit compared to a p-series (in the sense that the limit is a number L such that $0 < L < \infty$) then the ratio test will always be inconclusive for the series.

7. (8 pt) Evaluate

$$\lim_{x \to 0} \frac{e^{-2x^2} + 2e^{x^2} - 3\cos(3x^2)}{x^4}$$