MATH 166
 SPRING 2008

EXAM 3

1. (42 pt) Determine if the following series converge of diverge.
a) $\sum_{n=1}^{\infty} \frac{n!(3 n)!}{((2 n)!)^{2}}$
b) $\sum_{n=1}^{\infty}\left(e^{\frac{1}{n^{2}}}-1\right)$
c) $\sum_{n=1}^{\infty}(-1)^{n}\left(1-n \sin \left(\frac{1}{n}\right)\right)$
d) $\sum_{n=2}^{\infty} \frac{\sin \left(e^{n}\right) \cos \left(e^{n!}\right)}{n^{2} \ln (n)}$
e) $\sum_{n=3}^{\infty} \frac{\sqrt[a]{n^{k}-1}}{\sqrt[b]{n^{j}-1}}$, where $\frac{j}{b}-\frac{k}{a}>1$.
f) $\sum_{n=2}^{\infty} \frac{\left(2 \tan ^{-1}(n!)\right)^{2 n}}{9^{n}}$
2. (14 pt) Determine if the following sequences converge or diverge.

$$
\text { a) }\left\{(-1)^{n}\left(1+\frac{1}{n}\right)^{n}\right\}_{n=1}^{\infty} \quad \text { b) }\left\{a_{n}\right\}_{n=1}^{\infty} \text {, where } a_{1}=1 \text { and } a_{n+1}=\frac{1}{3-a_{n}} \text {. }
$$

3. (16 pt) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ and $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{p}}$, with $p>1$ and let ϵ be a positive number. Suppose you want to know how many terms are necessary to estimate these series with error less than or equal to ϵ.
a) Find a formula in terms of ϵ and p that indicates the number of terms necessary to approximate $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{p}}$ with error less than or equal to ϵ.
b) Find a formula in terms of ϵ and p that indicates the number of terms necessary to approximate $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ with error less than or equal to ϵ.
4. (12 pt) Find the center, radius, and interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{\ln (n+1)}{n 2^{3 n}}(4 x+2)^{n+1} .
$$

5. (10 pt) Consider the function $f(x)=e^{-x^{2}}$ and let $F(x)$ be an antiderivative of $f(x)$ such that $F(0)=1$. Use a Maclaurin series to find

$$
\int_{0}^{\frac{1}{2}} F(x) d x
$$

with error less than $\frac{1}{2000}$.
6. (8 pt) Suppose that $\sum_{n=0}^{\infty} a_{n}$ is a positive term series. Show that if it can be successfully limit compared to a p-series (in the sense that the limit is a number L such that $0<L<\infty$) then the ratio test will always be inconclusive for the series.
7. (8 pt) Evaluate

$$
\lim _{x \rightarrow 0} \frac{e^{-2 x^{2}}+2 e^{x^{2}}-3 \cos \left(3 x^{2}\right)}{x^{4}}
$$

