MATH 166
 SUMMER 2011
 EXAM 3

1. (15 pt) Let $f(x)=\int_{\frac{\pi}{4}}^{x} \sqrt{\sec ^{2}(t)-2} d t, \frac{\pi}{4} \leq x<\frac{\pi}{2}$. Find the length of this curve, $\frac{\pi}{4} \leq x \leq \frac{\pi}{3}$.
2. (15 pt) A window is formed in the shape of a rectangle of vertical height a and width b with semicircles of diameter a on the left and right sides. If the top of this window is submerged D feet under the surface of a fluid with density ρ, find the force due to hydrostatic pressure on the window.
3. (60 pt) Consider a triangle in the first quadrant with vertices $(0,0),(a, 0)$ and $(0, a)(a>0)$.
a) Locate the x-coordinate of the centroid.
b) Locate the y-coordinate of the centroid.
c) Find the volume obtained when this triangle is revolved about the x-axis and the volume obtained when this triangle is revolved about the y-axis.
d) Find the volume obtained when this triangle revolved about the line $y=-m x, m>0$.
e) What happens to your answer from d) as $m \longrightarrow 0^{+}$and as $m \longrightarrow \infty$ (and what should happen)?
f) For what value of m is the volume from d) maximized?
4. (20 pt) Let α be a real number such that $0<\alpha<1$ and consider the curve $y=\ln (x), \alpha \leq x \leq 1$.
a) Find the surface area obtained when this curve is revolved about the y-axis.
b) What happens to your answer from part a) as $\alpha \longrightarrow 0^{+}$?
(1) $\sin (2 x)=2 \sin (x) \cos (x)$
(2) $\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)$
(3) $\cos ^{2}(x)=\frac{1}{2}+\frac{1}{2} \cos (2 x)$
(4) $\sin ^{2}(x)=\frac{1}{2}-\frac{1}{2} \cos (2 x)$
(5) $\sin (A) \cos (B)=\frac{1}{2}[\sin (A-B)+\sin (A+B)]$
(6) $\sin (A) \sin (B)=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
(7) $\cos (A) \cos (B)=\frac{1}{2}[\cos (A-B)+\cos (A+B)]$
(8) $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
(9) $\sin (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$
(10) $\cos (x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}$
(11) $\left|E_{M}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}{ }^{3}}$
(12) $\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}}$
(13) $\left|E_{S}\right| \leq \frac{K(b-a)^{5}}{180 n^{4}}$
(14) $L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta$
(15) $S=\int_{a}^{b} 2 \pi(x$ or $y) d s$
(16) $\int_{n+1}^{\infty} f(x) d x \leq R_{n} \leq \int_{n}^{\infty} f(x) d x$
(17) $\bar{x}=\frac{1}{A} \int_{a}^{b} x(f(x)-g(x)) d x$
(18) $\bar{y}=\frac{1}{2 A} \int_{a}^{b}\left[(f(x))^{2}-(g(x))^{2}\right] d x$
(19) $A=\int_{a}^{b} \frac{1}{2} r^{2} d \theta$
(20) $\int \sec (x) d x=\ln |\sec (x)+\tan (x)|+c$
(21) $\int \sec ^{3}(x) d x=\frac{1}{2} \sec (x) \tan (x)+\frac{1}{2} \ln |\sec (x)+\tan (x)|+c$
