MATH 166
 SPRING 2009
 EXAM 3A

1. $(24 \mathrm{pt})$ Determine if the following sequences converge or diverge.

$$
\begin{aligned}
& \text { a) }\left\{\frac{\sqrt{n} \ln (n)}{(2 n+1)}\right\} \quad \text { b) }\{f(n)\} \text { where } f(x) \text { is a decreasing function with } 0 \leq f(x) \leq 1 \\
& \text { c) }\left\{(-1)^{n} \frac{n!n^{2}}{(n+2)!}\right\} \\
& \text { d) }\{\sqrt[3]{6}, \sqrt[3]{6+\sqrt[3]{6}}, \sqrt[3]{6+\sqrt[3]{6+\sqrt[3]{6}}}, \cdots\}
\end{aligned}
$$

2. (36 pt) Determine if the following series converge or diverge.
a) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}+1}{3 n^{2}+90 n}$
b) $\sum_{n=1}^{\infty} \frac{n \sin (n!) \tan ^{-1}\left((3 n)^{n}\right)}{n^{4}+n}$
c) $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^{2}+1}}{\sqrt[9]{\left(n^{8}+1\right)^{2}}}$
d) $\sum_{n=1}^{\infty}\left(\frac{1}{a^{2}+1}\right)^{n^{2}}, a \neq 0$
е) $\sum_{n=0}^{\infty} \frac{5^{n}(n+1)!n!}{(2 n)!}$
f) $\sum_{n=3}^{\infty}\left(\frac{1}{n}-\frac{1}{n+2}\right)$
3. (12 pt) Let $\left\{a_{n}\right\}$ be a sequence of positive real numbers.
a) First suppose that $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\frac{3}{4}$. Find $\lim _{n \rightarrow \infty} a_{n}$ and justify your answer.
b) Now consider the series $\sum_{n=1}^{\infty} a_{n}$. Let s_{n} denote the $n^{\text {th }}$ partial sum of the series. If the sequence $\left\{s_{n}\right\}$ is bounded above (that is, there is a number B such that $s_{n} \leq B$ for all n), find $\lim _{n \rightarrow \infty} a_{n} s_{n}$.
4. (18 pt) Let k be a fixed positive integer and consider the series

$$
\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{(\ln (n))^{\frac{1}{k}}}
$$

a) Show that the series converges.
b) Find a formula for the number of terms needed to ensure that the approximation $s \approx s_{n}$ has error less than or equal to ϵ where $\epsilon>0$ is a real number.
c) Explain why using the approximation $s \approx s_{n}$ may not be practical even for modestly small values of k (hint: roughly how big is n if $k=1$ and $\epsilon=\frac{1}{100}$).
5. (12 pt) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$.
a) Show that this series converges.
b) Find a formula for the number of terms needed to ensure that the approximation $s \approx s_{n}$ has error less than or equal to ϵ where $\epsilon>0$ is a real number.
6. (8 pt) Suppose that two positive term series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ can be successfully limit compared (in the sense that $\lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}=c$ where $0<c<\infty$). Show that if the ratio test gives 1 for the series $\sum_{n=1}^{\infty} a_{n}$ then it also gives 1 for $\sum_{n=1}^{\infty} b_{n}$.

