MATH 166 SPRING 2009 EXAM 3A

1. (24 pt) Determine if the following sequences converge or diverge.

a)
$$\{\frac{\sqrt{n \ln(n)}}{(2n+1)}\}$$
 b) $\{f(n)\}$ where $f(x)$ is a decreasing function with $0 \le f(x) \le 1$
c) $\{(-1)^n \frac{n!n^2}{(n+2)!}\}$ d) $\{\sqrt[3]{6}, \sqrt[3]{6} + \sqrt[3]{6}, \sqrt[3]{6} + \sqrt[3]{6}, \frac{\sqrt{6}}{\sqrt{6}}, \frac{\sqrt{6}}{\sqrt{6}}, \cdots\}$

2. (36 pt) Determine if the following series converge or diverge.

a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2 + 1}{3n^2 + 90n}$$
 b) $\sum_{n=1}^{\infty} \frac{n \sin(n!) \tan^{-1}((3n)^n)}{n^4 + n}$ c) $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^2 + 1}}{\sqrt[9]{(n^8 + 1)^2}}$
d) $\sum_{n=1}^{\infty} (\frac{1}{a^2 + 1})^{n^2}, a \neq 0$ e) $\sum_{n=0}^{\infty} \frac{5^n (n+1)! n!}{(2n)!}$ f) $\sum_{n=3}^{\infty} (\frac{1}{n} - \frac{1}{n+2})$

- 3. (12 pt) Let $\{a_n\}$ be a sequence of positive real numbers.

 - a) First suppose that $\lim_{n\to\infty} \sqrt[n]{a_n} = \frac{3}{4}$. Find $\lim_{n\to\infty} a_n$ and justify your answer. b) Now consider the series $\sum_{n=1}^{\infty} a_n$. Let s_n denote the n^{th} partial sum of the series. If the sequence $\{s_n\}$ is bounded above (that is, there is a number B such that $s_n \leq B$ for all n), find $\lim_{n\to\infty} a_n s_n$.
- 4. (18 pt) Let k be a fixed positive integer and consider the series

$$\sum_{n=2}^{\infty} (-1)^n \frac{1}{(\ln(n))^{\frac{1}{k}}}$$

- a) Show that the series converges.
- b) Find a formula for the number of terms needed to ensure that the approximation $s \approx s_n$ has error less than or equal to ϵ where $\epsilon > 0$ is a real number.
- c) Explain why using the approximation $s \approx s_n$ may not be practical even for modestly small values of k (hint: roughly how big is n if k = 1 and $\epsilon = \frac{1}{100}$).
- 5. (12 pt) Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$.
 - a) Show that this series converges.
 - b) Find a formula for the number of terms needed to ensure that the approximation $s \approx s_n$ has error less than or equal to ϵ where $\epsilon > 0$ is a real number.

6. (8 pt) Suppose that two positive term series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ can be successfully limit compared (in the sense that $\lim_{n\to\infty} \frac{b_n}{a_n} = c$ where $0 < c < \infty$). Show that if the ratio test gives 1 for the series $\sum_{n=1}^{\infty} a_n$ then it also gives 1 for $\sum_{n=1}^{\infty} b_n$.