MATH 166
 SPRING 2009
 EXAM 3B

1. $(24 \mathrm{pt})$ Find the center, radius, and interval of convergence of the following series.
a) $\sum_{n=0}^{\infty} \frac{(2 x-1)^{2 n}}{n a^{n}}, a>0$
b) $\sum_{n=1}^{\infty} \frac{x^{n^{2}}}{n^{n}}$
c) $\sum_{n=2}(-1)^{n} \frac{\tan ^{-1}(n)(x+3)^{n}}{n \ln (n)}$
d) $\sum_{n=0}^{\infty} 2^{n} x^{2^{n}}$
2. (36 pt) Consider the series

$$
\sum_{n=0}^{\infty} \frac{3^{n} \ln (n)}{n}\left(\frac{1}{x}\right)^{n}
$$

a) Find the values of x for which this series converges.
b) Find the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{3^{n} \ln (n)}{n} x^{2 n}$
3. (12 pt) Write the following series as a more familiar function.
a) $\sum_{n=0}^{\infty}(n+1) x^{2 n}$ (hint: first consider $\left.\sum_{n=0}^{\infty}(n+1) x^{n}\right)$.
b) $\sum_{n=0}^{\infty} \frac{x^{4 n}}{n!}$.
c) $\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!(2 n+1)}$.
4. (18 pt) Consider the infinite series

$$
\sum_{n=0}^{\infty} \sin ^{n}(\theta)
$$

a) Find all values of θ for which this series converges.
b) Find the sum of this series (for values of θ for which it converges).
5. (12 pt) Consider the function

$$
f(x)=\frac{1}{a^{k}+x^{k}}, a>1 .
$$

a) Find a Maclaurin series for $f(x)$ and determine its interval of convergence.
b) Show that $\int_{0}^{\frac{a}{2}} \frac{d x}{a^{k}+x^{k}} \approx a$ with error no more than $\frac{1}{4}$.
6. (8 pt) Approximate the integral

$$
\int_{0}^{\frac{1}{2}} x^{2} \cos \left(x^{2}\right) d x
$$

with error less than or equal to $\frac{1}{1000}$.

