MATH 166
 SUMMER 2012
 EXAM 4

1. $(48 \mathrm{pt})$ Determine if the following series converge or diverge.
a) $\sum_{n=1}^{\infty} \frac{1}{(\ln (n))^{\ln (n)}}$
b) $\sum_{n=0}^{\infty}(-1)^{n} \frac{\ln (n)}{3 n+1}$
c) $\sum_{n=0}^{\infty} \frac{(3 n)!}{n!(2 n)!2^{3 n}}$
d) $\sum_{n=1}^{\infty} n \sin \left(\frac{1}{n^{3}}\right)$
e) $\sum_{n=1}^{\infty} \frac{\sqrt[4]{16 n^{10}+2 n^{5}+1}}{\sqrt[5]{32 n^{18}+n^{8}+n+7}}$
f) $\sum_{n=2}^{\infty}(\sqrt[n]{9}-\sqrt[n+1]{9})$
2. (20 pt) Consider the following sequence

$$
a_{n+1}=\sqrt{2 a_{n}-1}, n \geq 1, a_{1}>\frac{1}{2} .
$$

a) If $a_{1} \neq 1$ show that this sequence is always decreasing.
b) Show if $a_{1}>1$ show that this sequence has a floor of 1 .
c) Explain why this sequence converges if $a_{1}>1$.
d) If this sequence converges, what is its limit?
e) What happens if $\frac{1}{2}<a_{1}<1$?
3. (12 pt) Determine if the following sequences converge or diverge.

$$
\text { a) }(a, \sin (a), \sin (\sin (a)), \cdots) \quad \text { b) }\left(\frac{(-1)^{n}\left(n^{2}+n \sin (n)\right)}{n^{2}+1}\right)_{n=1}^{\infty}
$$

4. $(20 \mathrm{pt})$ Consider the series

$$
\sum_{n=1}^{\infty} \frac{4 n}{\left(n^{2}+1\right)^{3}} \text { and } \sum_{n=1}^{\infty}(-1)^{n} \frac{4 n}{\left(n^{2}+1\right)^{3}}
$$

a) Show that the first series converges.
b) How many terms are required so that the approximation $s \approx s_{n}$ has error less than or equal $\frac{1}{100}$.
c) Show that the second series converges.
d) How many terms are required so that the approximation $s \approx s_{n}$ has error less than or equal $\frac{1}{100}$.
5. (10 pt) Consider the series

$$
\sum_{n=0}^{\infty} a_{n}
$$

and suppose that the partial sums satify the formula

$$
s_{n}=3 n \sin \left(\frac{2}{n}\right)
$$

a) Does this series converge? If so, what is its sum?
b) What is $\lim _{n \rightarrow \infty} a_{n}$ or is there not enough information to tell?

