MATH 166

SPRING 2004
FINAL EXAM

1. (32 pt) Evaluate the following integrals.
a) $\int \frac{x^{2} d x}{2 x+1}$
b) $\int \frac{e^{x} d x}{\sqrt{e^{2 x}+1}}$
c) $\int_{0}^{\infty} \frac{e^{-\frac{1}{x}}}{x^{2}} d x$
d) $\int_{1}^{e} \ln (x) d x$
2. (10 pt) Determine if the following sequences converge or diverge.
a) $\left\{\frac{\sin \left((n!)^{n}\right)}{\sqrt{2 n}}\right\}_{n=1}^{\infty}$
b) $\{\sin (2), \sin (\sin (2)), \sin (\sin (\sin (2))), \cdots\}$
3. (15 pt) Determine if the following series converge or diverge.
а) $\sum_{n=1}^{\infty} \frac{n^{2}+2}{\sqrt[3]{n^{10}+8 n^{3}+2}}$
b) $\sum_{n=1}^{\infty}\left(\frac{3 n+1}{4 n-5}\right)^{2 n+3}$
c) $\sum_{n=0}^{\infty}(-1)^{n} \frac{n^{2}}{2^{n}}$
4. (10 pt) Consider the polar curve $r=\sin \left(\frac{1}{2} \theta\right)$.
a) Sketch this curve.
b) Find the area enclosed by the two inner loops.
5. (15 pt) Consider the curves $y=x$ and $y=x \sin (x), 0 \leq x \leq \frac{\pi}{2}$.
a) Find the area of the region bounded by these two curves $\left(0 \leq x \leq \frac{\pi}{2}\right)$.
b) Find the volume obtained when this region is revolved about the y-axis.
c) Set up (but do not evaluate) an integral(s) that expresses the surface area of the solid obtained when this region is revolved about the x-axis.
6. (5 pt) Suppose that you wish to approximate $\int_{1}^{3} f(x) d x$ using Simpson's rule. You find that $f^{(4)}(x)=$ $\frac{x}{x^{2}+4}$. Find the smallest n so that the approximation S_{n} has error less than or equal to $\frac{1}{1800}$.
7. (8 pt) Sketch the graph of the parametric curve given by $x=\frac{t}{t^{2}+1}, y=t^{3}-12 t$.
8. (5 pt) Consider the portion of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ that is contained in the first quadrant. When you revolve this region about the x-axis you get a semiellipsoid of volume $V_{x}=\frac{4}{3} \pi a b^{2}$ and when you revolve this region about the y-axis you get a semiellipsoid of volume $V_{y}=\frac{4}{3} \pi a^{2} b$. Use this to show that the centroid of the region lies on the line $y=\frac{b}{a} x$.
9. (5 pt) Suppose that you pull a bucket containing 75 pounds of water up a 100 foot well. If the rope you are using weighs 2 pounds per foot, how much work is done in hoisting the bucket all the way up the well?
10. (5 pt) Write the function $f(x)=\frac{1}{x}$ as a Taylor series centered at 1 and determine its interval of convergence.
