MATH 166
 SPRING 2006
 FINAL EXAM

1. (24 pt) Evaluate the following integrals.
a) $\int \sqrt{a^{2} x^{2}+1} d x, a \neq 0$
b) $\int x^{3} e^{x^{2}} d x$
c) $\int_{1}^{\infty} \frac{d x}{x^{4}+x^{2}}$
2. (8 pt) Determine if the following sequences converge or diverge.

$$
\text { a) }\left\{(-1)^{n} \frac{n}{2 n+1}\right\}_{n=1}^{\infty} \quad \text { b) }\left\{r, r^{2}, r^{3}, \cdots\right\}_{n=1}^{\infty} \text { where } r \text { is a root of the polynomial } x^{3}+x-1
$$

3. (12 pt) Determine if the following series converge or diverge.
a) $\sum_{n=1}^{\infty} \frac{2 n \cos (n)}{n^{3}+7}$
b) $\sum_{n=2}^{\infty} \frac{2^{n}+10}{n 3^{n}}$
c) $\sum_{n=1}^{\infty}(-1)^{n} \frac{e^{-n}}{\sin \left(e^{-n}\right)}$
4. (25 pt) Consider the functions $f(x)=x^{2}$ and $g(x)=x^{3}, 0 \leq x \leq 1$.
a) Locate the centroid of the region bounded by $f(x)$ and $g(x)$.
b) Find the volume obtained when this region is revolved about the x-axis.
c) Find the volume obtained when this region is revolved about the y-axis.
d) Find the length of $f(x), 0 \leq x \leq 1$.
e) Find the surface area obtained when $g(x)$ (for $0 \leq x \leq 1$) is revolved about the y-axis.
5. (9 pt) Consider the polar curves $r=2 \cos \left(\frac{1}{3} \theta\right)$ and $r=\theta$.
a) Sketch the curve $r=2 \cos \left(\frac{1}{3} \theta\right)$.
b) Find the area of the inner loop of $r=2 \cos \left(\frac{1}{3} \theta\right)$.
c) Find the length of the curve $r=\theta, 0 \leq \theta \leq \pi$.
6. (10 pt) Consider the curve given by the parametric equations $x=\frac{t^{2}}{t^{2}+1}$ and $y=\frac{t^{3}}{t^{2}+1}$. For your convenience, $\frac{d x}{d t}=\frac{2 t}{\left(t^{2}+1\right)^{2}}$ and $\frac{d y}{d t}=\frac{t^{4}+3 t^{2}}{\left(t^{2}+1\right)^{2}}$.
a) Sketch this curve and pay special attention to what happens at the origin (what can you say about the limit of the slope of the tangent to this curve as t approaches 0 from both sides?).
b) Write an integral that expresses the area bounded by this curve and the line $x=1$. Is this area finite?
7. (10 pt) A sphere of radius 1 has a volume $\frac{4}{3} \pi$. You wish to make a "napkin ring" out of this by drilling a hole of radius r all the way through the sphere. How big should r be so that the volume of the resulting "napkin ring" is exactly π ?
8. (6 pt) Find the center, radius, and interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(2 x-5)^{3 n}}{8^{n+3}}
$$

9. (6 pt) Suppose that you wish to approximate $\int_{0}^{2} f(x) d x$ using Simpson's Rule. You find that the fourth derivative of $f(x)$ is given by $f^{(4)}(x)=\frac{x}{x^{2}+1}$. Is using S_{10} good enough to ensure an error of less than $\frac{1}{100,000}$?
