MATH 166
 SPRING 2007
 FINAL EXAM

1. $(32 \mathrm{pt})$ Evaluate the following integrals.
a) $\int \sqrt{x} e^{\sqrt{x}} d x$,
b) $\int \frac{\cos (x)}{\sin ^{3}(x)+\sin (x)} d x$
c) $\int_{2}^{\infty} \frac{d x}{x^{2} \sqrt{x^{2}+4}}$
d) $\int_{0}^{\sqrt[4]{3}} 2 x \tan ^{-1}\left(x^{2}\right) d x$
2. (6 pt) Determine if the following sequences converge or diverge.

$$
\text { a) }\left\{(-1)^{n} n \sin \left(\frac{1}{n}\right)\right\}_{n=1}^{\infty} \quad \text { b) }\left\{2^{-s_{n}}\right\}_{n=1}^{\infty} \text { where } s_{n} \text { is the } n^{\text {th }} \text { partial sum of a positive term series. }
$$

3. (15 pt) Determine if the following series converge or diverge.

$$
\begin{array}{lll}
\text { a) } \sum_{n=1}^{\infty}(-1)^{n} \frac{n}{2 n^{2}+1} & \text { b) } \sum_{n=2}^{\infty} n e^{-n} & \text { c) } \sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}
\end{array}
$$

4. (15 pt) Consider the curve given by the parametric equations $x=\frac{2}{t^{2}+1}$ and $y=\frac{2 t}{t^{2}+1}$. For your convenience, $\frac{d x}{d t}=\frac{-4 t}{\left(t^{2}+1\right)^{2}}$ and $\frac{d y}{d t}=\frac{2-2 t^{2}}{\left(t^{2}+1\right)^{2}}$.
a) Sketch this curve, indicating the direction in which the curve is drawn as t increases.
b) Find the total area enclosed by this curve.
c) Find the total length of this curve.
5. (12 pt) Consider the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 ; a, b>0$.
a) Find the area enclosed by the entire ellipse.
b) Locate the y-coordinate of the centroid of the upper half of this ellipse.
c) Find the volume obtained when the upper half of this ellipse is revolved about the x-axis.
6. (6 pt) Consider the polar curve $r=\tan \left(\frac{1}{2} \theta\right) ; 0 \leq \theta<\pi$.
a) Sketch this polar curve.
b) Find the area of the region in the first quadrant that is bounded by this curve, the x-axis, and the y-axis.
7. (6 pt) Find the Maclaurin series for $f(x)=e^{-x^{2}}$ and use this series to approximate $\int_{0}^{1} x^{2} e^{-x^{2}} d x$ with error less than $\frac{1}{50}$.
8. (6 pt) A square window of side length R has its top border D feet below the surface of the ocean. If water weighs 62.5 pounds per cubic foot and pressure at depth x is given by $62.5 x$, find the force due to hydrostatic pressure on the window (recall that $F=P A$).
9. $(6 \mathrm{pt})$ Let $f(x)$ be a continuous function.
a) Show that if $f(x)$ is odd, then the average value of $f(x)$ on $[-a, a]$ is 0 .
b) Show that if $f(x)$ is even, then the average value of $f(x)$ on $[-a, a]$ is equal to the average value of $f(x)$ on $[0, a]$.
10. (6 pt) Solve the differential equation $\frac{d y}{d x}=\frac{y}{x^{2}+1}$ given that $y(0)=2$.
