MATH 166
 SPRING 2009
 FINAL EXAM

1. (15 pt) Determine if the following sequences converge or diverge.
a) $\left\{\frac{\sin (n!)}{\sqrt{n+1}}\right\}_{n=1}^{\infty}$
b) $\left\{\tan ^{-1}\left(\sum_{k=1}^{n} \frac{1}{2^{k}}\right)\right\}_{n=1}^{\infty}$
c) $\left\{a_{n}\right\}_{n=1}^{\infty}$, where $a_{1}=1$ and $a_{n+1}=\frac{1}{a_{n}+1}, n \geq 1$.
2. (20 pt) Determine if the following series converge or diverge.
a) $\sum_{n=2}^{\infty} \frac{1}{\ln \left(n^{n}\right)}$
b) $\sum_{n=2}^{\infty} \frac{1}{(\ln (n))^{n}}$
c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \tan ^{-1}(n)}$
d) $\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{2}+n}$
3. $(20 \mathrm{pt})$ Evaluate the following integrals.
a) $\int \sqrt{2 x-x^{2}} d x$
b) $\int_{0}^{\infty} \frac{e^{x}}{e^{2 x}+1} d x$
c) $\int_{0}^{\sqrt{3}} \frac{x^{3}}{\sqrt{x^{2}+1}} d x$
d) $\int \frac{\ln (x) d x}{x^{2}}$
4. (5 pt) Sketch the curve defined by the parametric equations $x=t^{3}-3 t$ and $y=t^{3}-12 t$.
5. (5 pt) Consider the polar equation $r=\frac{1}{2}+\sin (\theta)$.
a) Sketch this curve.
b) Find the area enclosed by the inner loop.
6. (10 pt) Consider an inverted cone with base (roof) radius R and height h. Suppose that this container is filled with a liquid of density ρ.
a) Find a function $p(x)$ that tells how much work is done in pumping x vertical feet of liquid out of the tank.
b) Compute the average value of $p(x)$ on the interval $[0, h]$.
7. (8 pt) Find the center, radius, and interval of convergence for the power series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{(2 x-4)^{2 n}}{n 3^{n} \ln (n)} .
$$

8. (7 pt) Find a Maclaurin series for the function

$$
f(x)=\left\{\begin{array}{l}
\frac{e^{x}-1}{x}, \text { if } x \neq 0 ; \\
1, \text { if } x=0,
\end{array}\right.
$$

and use this series to approximate $\int_{-\frac{1}{2}}^{0} f(x) d x$ with error less than $\frac{1}{500}$.
9. (5 pt) Find the length of the curve $y=\ln (\cos (x)), 0 \leq x \leq \frac{\pi}{4}$.
10. (15 pt) Consider a sphere of radius R obtained by revolving the upper half-circle of radius R about the x-axis.
a) Find the volume of the sphere.
b) Find the surface area of the sphere.
c) Locate the centroid of the upper half-circle.

