1. (15 pt) Determine if the following sequences converge or diverge.

 a) \(\lim_{n \to \infty} \frac{\sin(n!)}{\sqrt{n + 1}} \)

 b) \(\lim_{n \to \infty} \frac{1}{\tan^{-1}\left(\sum_{k=1}^{n} \frac{1}{2k}\right)} \)

 c) \(\{a_n\}_{n=1}^{\infty} \), where \(a_1 = 1 \) and \(a_{n+1} = \frac{1}{a_n + 1}, n \geq 1 \).

2. (20 pt) Determine if the following series converge or diverge.

 a) \(\sum_{n=2}^{\infty} \frac{1}{\ln(n)} \)

 b) \(\sum_{n=2}^{\infty} \frac{1}{(\ln(n))^n} \)

 c) \(\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} \tan^{-1}(n)} \)

 d) \(\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2 + n} \)

3. (20 pt) Evaluate the following integrals.

 a) \(\int \sqrt{2x - x^2} \, dx \)

 b) \(\int_{0}^{\infty} \frac{e^x}{e^{2x} + 1} \, dx \)

 c) \(\int_{0}^{\sqrt{3}} \frac{x^3}{\sqrt{x^2 + 1}} \, dx \)

 d) \(\int \frac{\ln(x)}{x^2} \, dx \)

4. (5 pt) Sketch the curve defined by the parametric equations \(x = t^3 - 3t \) and \(y = t^3 - 12t \).

5. (5 pt) Consider the polar equation \(r = \frac{1}{2} + \sin(\theta) \).

 a) Sketch this curve.

 b) Find the area enclosed by the inner loop.

6. (10 pt) Consider an inverted cone with base (roof) radius \(R \) and height \(h \). Suppose that this container is filled with a liquid of density \(\rho \).

 a) Find a function \(p(x) \) that tells how much work is done in pumping \(x \) vertical feet of liquid out of the tank.

 b) Compute the average value of \(p(x) \) on the interval \([0, h]\).

7. (8 pt) Find the center, radius, and interval of convergence for the power series

 \[\sum_{n=1}^{\infty} \frac{(-1)^n (2x - 4)^{2n}}{n3^n \ln(n)} \]

8. (7 pt) Find a Maclaurin series for the function

 \[f(x) = \begin{cases} \frac{e^x - 1}{x}, & \text{if } x \neq 0; \\ 1, & \text{if } x = 0, \end{cases} \]

 and use this series to approximate \(\int_{-\frac{1}{2}}^{0} f(x) \, dx \) with error less than \(\frac{1}{500} \).

9. (5 pt) Find the length of the curve \(y = \ln(\cos(x)), 0 \leq x \leq \frac{\pi}{4} \).

10. (15 pt) Consider a sphere of radius \(R \) obtained by revolving the upper half-circle of radius \(R \) about the \(x \)-axis.

 a) Find the volume of the sphere.

 b) Find the surface area of the sphere.

 c) Locate the centroid of the upper half-circle.