MATH 166 SUMMER 2012 FINAL EXAM

1. (32 pt) Evaluate the following integrals.

a)
$$\int \frac{x^2}{\sqrt{9-4x^2}} dx$$
 b) $\int e^{2x} e^{e^x} dx$ c) $\int \frac{\cos(x)}{\sin^2(x)(\sin^2(x)+1)} dx$
d) $\int_0^1 (\ln(x))^2 dx$

2. (16 pt) Determine if the following series converge or diverge.

a)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2 + 1}}{\sqrt[3]{n^7 + n^4 + 1}}$$
 b) $\sum_{n=2}^{\infty} \sin(\frac{1}{n})$

- 3. (18 pt) Consider the region in the first quadrant bounded by $y = x^n$, n > 1, the y-axis and the line y = 1.
 - a) Find the area of this region.
 - b) Find the x-coordinate of the centroid of this region.
 - c) Find the y-coordinate of the centroid of this region.
 - d) Find the volume obtained when this region is revolved about the x-axis.
 - e) Find the volume obtained when this region is revolved about the y-axis.
 - f) What happens (should happen) to the centroid as $n \to \infty$?
- 4. (12 pt) Consider the parametric equations $x = t^3 3t$ and $y = \frac{t^2}{t^2 + 1}$.
 - a) Compute dx/dt and dy/dt and find where x and y are increasing and decreasing.
 b) Find the values of t for which this curve intersects the y-axis.

 - c) Sketch this curve.
 - d) Find the area enclosed by the loop in this curve.
- 5. (8 pt) Consider the polar curve $r = a + \sin(\theta), a > 1$.
 - a) Sketch this polar curve.
 - b) Calculate the area enclosed by this curve.
- 6. (8 pt) Consider a cylindrical bucket of height h and radius R is filled with a fluid of density ρ .
 - a) Find the force due to hydrostatic pressure on the side of the bucket.
 - b) If this bucket weighs b units and is drawn up a well that is w units deep by a cable that weighs c per unit length, find the work done.

7. (8 pt) Consider the sequence defined by $a_1 = 4$ and $a_{n+1} = \sqrt{\frac{1}{2}a_n^2 + 1}, n \ge 1$.

- a) Show that each term in this sequence is between 0 and 4.
- b) Show that this sequence is decreasing.
- c) Explain why this sequence converges.
- d) What is the limit of this sequence?
- 8. (8 pt) Consider the power series

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{2^n}.$$

- a) Find the center, radius, and interval of convergence of the power series.
- b) If $f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{2^n}$ then find $\int_{-1}^1 f(x) dx$ with error no more than $\frac{1}{100}$.