MATH 265 FALL 2008 EXAM 1

1. (5 pt) Let ABCD be a quadrilateral. Show that the quadrilateral formed by connecting the successive midpoints of ABCD is a parallelogram.

- 2. (5 pt) Find the point of maximum curvature of the function $f(x) = e^{ax}$. What happens as $a \longrightarrow \infty$?
- 3. (5 pt) Find the line of intersection of the planes 4x + 3y + z = 5 and x y z = 3.
- 4. (5 pt) Show that the distance from the point (x_1, y_1) to the line ax + by + c = 0 is given by

$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

where a, b are not both zero.

- 5. (5 pt) Reparameterize the vector function $\mathbf{r}(t) = \langle a\cos(t), bt, a\sin(t) \rangle$ with respect to arclength.
- 6. (5 pt) Find the volume of the parallelopiped determined by the vectors $\langle 1, 0, 1 \rangle$, $\langle 3, 1, 2 \rangle$, and $\langle 4, 1, 3 \rangle$.

7. (5 pt) Consider the elliptical coordinates defined by $x = a\rho \sin(\phi)\cos(\theta), y = b\rho \sin(\phi)\sin(\theta)$, and $z = c\rho \cos(\phi)$ where a, b, and c are positive constants. Find the equation for the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = R^2$ in this coordinate system.