MATH 265

FALL 2008
EXAM 1

1. (5 pt) Let ABCD be a quadrilateral. Show that the quadrilateral formed by connecting the successive midpoints of ABCD is a parallelogram.
2. (5 pt) Find the point of maximum curvature of the function $f(x)=e^{a x}$. What happens as $a \longrightarrow \infty$?
3. (5 pt) Find the line of intersection of the planes $4 x+3 y+z=5$ and $x-y-z=3$.
4. (5 pt) Show that the distance from the point $\left(x_{1}, y_{1}\right)$ to the line $a x+b y+c=0$ is given by

$$
d=\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}
$$

where a, b are not both zero.
5. (5 pt) Reparameterize the vector function $\mathbf{r}(t)=\langle a \cos (t), b t, a \sin (t)\rangle$ with respect to arclength.
6. (5 pt) Find the volume of the parallelopiped determined by the vectors $\langle 1,0,1\rangle,\langle 3,1,2\rangle$, and $\langle 4,1,3\rangle$.
7. (5 pt) Consider the elliptical coordinates defined by $x=a \rho \sin (\phi) \cos (\theta), y=b \rho \sin (\phi) \sin (\theta)$, and $z=c \rho \cos (\phi)$ where a, b, and c are positive constants. Find the equation for the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=R^{2}$ in this coordinate system.

