MATH 265 FALL 2009 EXAM 1

- 1. Let $\vec{a} = \langle 2, 1, 3 \rangle$ and $\vec{b} = \langle -2, 7, -1 \rangle$
 - a) (5 pts) Find the vector $5\vec{a} 3\vec{b}$.
 - b) (5 pts) Find $\vec{a} \circ \vec{b}$.
 - c) (5 pts) Find the vector $\vec{a} \times \vec{b}$.
 - d) (5 pts) Find the angle between the vectors \vec{a} and \vec{b} .
 - e) (5 pts) Find the scalar projection of \vec{a} on \vec{b} .
 - f) (5 pts) Find the vector projection of \vec{a} on \vec{b} .
- 2. Consider the triangle with vertices (1, 1, 1), (1, -2, 0) and (0, -1, 3).
 - a) (5 pts) Find the area of this triangle.
 - b) (5 pts) Find the angle at the vertex (1, 1, 1). Is this angle more or less than 90 degrees?
- 3. (5 pts) Find the line of intersection of the planes x + y = 4 and x z = 2.
- 4. Consider the points P(1, 0, 0) and Q(-1, 0, 0).
 - a) (5 pts) Find all points in \mathbb{R}^3 that have distance R from P and describe the surface.
 - b) (5 pts) Find all points in \mathbb{R}^3 that are equidistant from P and Q and describe the surface.
 - c) (5 pts) Find all points, A, in \mathbb{R}^3 such that the distance from P to A plus the distance from Q to A is 4 and describe the surface.
- 5. Consider the line x = at 1, y = bt 1, z = ct 1 (*a*, *b*, *c* not all 0).
 - a) (5 pts) Find the closest point on this line to the origin.
 - b) (5 pts) What happens to your answer if a = b = c?