MATH 265
 FALL 2009
 EXAM 1

1. Let $\vec{a}=\langle 2,1,3\rangle$ and $\vec{b}=\langle-2,7,-1\rangle$
a) (5 pts) Find the vector $5 \vec{a}-3 \vec{b}$.
b) (5 pts) Find $\vec{a} \circ \vec{b}$.
c) (5 pts) Find the vector $\vec{a} \times \vec{b}$.
d) (5 pts) Find the angle between the vectors \vec{a} and \vec{b}.
e) (5 pts) Find the scalar projection of \vec{a} on \vec{b}.
f) (5 pts) Find the vector projection of \vec{a} on \vec{b}.
2. Consider the triangle with vertices $(1,1,1),(1,-2,0)$ and $(0,-1,3)$.
a) $(5 \mathrm{pts})$ Find the area of this triangle.
b) (5 pts) Find the angle at the vertex $(1,1,1)$. Is this angle more or less than 90 degrees?
3. (5 pts) Find the line of intersection of the planes $x+y=4$ and $x-z=2$.
4. Consider the points $P(1,0,0)$ and $Q(-1,0,0)$.
a) (5 pts) Find all points in \mathbb{R}^{3} that have distance R from P and describe the surface.
b) (5 pts) Find all points in \mathbb{R}^{3} that are equidistant from P and Q and describe the surface.
c) (5 pts) Find all points, A, in \mathbb{R}^{3} such that the distance from P to A plus the distance from Q to A is 4 and describe the surface.
5. Consider the line $x=a t-1, y=b t-1, z=c t-1(a, b, c$ not all 0$)$.
a) (5 pts) Find the closest point on this line to the origin.
b) (5 pts) What happens to your answer if $a=b=c$?
