MATH 265

FALL 2008

EXAM 2

1. (5 pt) Find all critical numbers and classify local extrema for the function $f(x, y)=x^{3}-y^{2}+x y$.
2. (5 pt) Find the maximum and minimum values of the function $g(x, y)=x^{4}-2 x^{2} y^{2}+y^{3}$ on the triangle with vertices $(0,0),(4,0)$, and $(4,8)$.
3. (5 pt) Show that every normal line to the sphere $x^{2}+y^{2}+z^{2}=R^{2}$ passes through the origin.
4. (5 pt) Let $z=f(x, y), x=r \cos (\theta)$, and $y=r \sin (\theta)$. Show that

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial^{2} z}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} z}{\partial \theta^{2}}+\frac{1}{r} \frac{\partial z}{\partial r} .
$$

5. (5 pt) Consider the function $f(x, y, z)=\sqrt[n]{(a x+b y+c z)^{2}}$. Find the directional derivative of this function in the direction of the vector $\langle-2,3,-6\rangle$. In what direction does this function increase most rapidly?
6. (5 pt) Consider the ellipsoid obtained by revolving the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ about the y-axis. Find the volume of the largest cylinder (with respect to volume) that can be put inside this ellipsoid.
7. (5 pt) The circular paraboloid $z=x^{2}+y^{2}$ and the plane $x+y+2 z=2$ intersect in an ellipse. Find the point(s) on this ellipse that minimize and maximize distance from the origin.
