MATH 265
 FALL 2009
 EXAM 2

1. Consider the cone $z^{2}=x^{2}+y^{2}$ and the plane $z-m y=2$ where m is a constant.
a) (5 pts) What is the shape of the curve if $|m|<1$?.
b) (5 pts) What is the shape of the curve if $|m|>1$?.
c) (5 pts) What is the shape of the curve if $|m|=1$?.
2. (5 pts) Consider the twisted cubic $\vec{r}(t)=\left\langle 2 t, t^{3},-t^{2}\right\rangle$. Find the parametric equations for the tangent line to this twisted cubic at $(-2,-1,-1)$.
3. (5 pts) Find the maximum curvature on the function $f(x)=\ln (x)$ and find the point where this maximum curvature occurs.
4. Consider a particle traveling through space with velocity given

$$
\vec{v}(t)=\langle\sin (t), 2, \cos (t)\rangle
$$

with $t \geq 0$ and $\vec{r}(0)=\langle 1,0,0\rangle$.
a) (5 pts) Find the position function $\vec{r}(t)$ and compute its unit tangent vector.
b) (5 pts) Find the unit normal vector for $\vec{r}(t)$.
c) (5 pts) Find the binormal vector for $\vec{r}(t)$.
d) (5 pts) Find the displacement of the particle as t goes from 0 to π.
e) (5 pts) Find the total distance traveled by the particle.
5. (5 pts) Find the length function for the curve defined by the equations $x=\cos \left(t^{2}\right), y=\sin \left(t^{2}\right), z=$ $2 t$ (starting at $t=0$).
6. (5 pts) Let $\vec{r}(t)$ be a vector-valued function with the property that its position vector is always perpendicular to its tangent vector. Show that the curve determined by $\vec{r}(t)$ lies on a sphere of some constant radius R.

