1. Consider the cone $z^2 = x^2 + y^2$ and the plane $z - my = 2$ where m is a constant.
 a) (5 pts) What is the shape of the curve if $|m| < 1$?
 b) (5 pts) What is the shape of the curve if $|m| > 1$?
 c) (5 pts) What is the shape of the curve if $|m| = 1$?

2. (5 pts) Consider the twisted cubic $\vec{r}(t) = \langle 2t, t^3, -t^2 \rangle$. Find the parametric equations for the tangent line to this twisted cubic at $(-2, -1, -1)$.

3. (5 pts) Find the maximum curvature on the function $f(x) = \ln(x)$ and find the point where this maximum curvature occurs.

4. Consider a particle traveling through space with velocity given
 \[\vec{v}(t) = \langle \sin(t), 2, \cos(t) \rangle \]
 with $t \geq 0$ and $\vec{r}(0) = (1, 0, 0)$.
 a) (5 pts) Find the position function $\vec{r}(t)$ and compute its unit tangent vector.
 b) (5 pts) Find the unit normal vector for $\vec{r}(t)$.
 c) (5 pts) Find the binormal vector for $\vec{r}(t)$.
 d) (5 pts) Find the displacement of the particle as t goes from 0 to π.
 e) (5 pts) Find the total distance traveled by the particle.

5. (5 pts) Find the length function for the curve defined by the equations $x = \cos(t^2), y = \sin(t^2), z = 2t$ (starting at $t = 0$).

6. (5 pts) Let $\vec{r}(t)$ be a vector-valued function with the property that its position vector is always perpendicular to its tangent vector. Show that the curve determined by $\vec{r}(t)$ lies on a sphere of some constant radius R.