MATH 265

FALL 2008
EXAM 3

1. (5 pt) Show that the moment of inertia (about a central axis) is equal to

$$
I=\frac{2}{5} M R^{2}
$$

where M is the mass of the sphere and R is its radius.
2. (5 pt) Find the volume of the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

where $a, b, c>0$. Hint: it might be good to consider the elliptical coordinates $x=\rho a \sin (\phi) \cos (\theta), y=$ $\rho b \sin (\phi) \sin (\theta), z=\rho c \cos (\phi)$.
3. (5 pt) Find the volume of the region enclosed by the paraboloid $z=x^{2}+3 y^{2}$ and the planes $x=0, y=$ $1, y=x, z=0$.
4. (5 pt) Evaluate

$$
\iiint_{E} x d V
$$

where E is enclosed by the planes $z=0$ and $z=x+y+5$ and by the cylinders $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$.
5. (5 pt) Evaluate

$$
\iint_{R}\left(\frac{x-2 y}{3 x-y}\right) d A
$$

where R is the parallelogram bounded by $x-2 y=0, x-2 y=4,3 x-y=1,3 x-y=8$.

