MATH 265
 FALL 2009
 EXAM 5

1. (5 pts) Let n be a positive integer and C_{n} be the circle $x^{2}+y^{2}=R^{2}$ traversed n times ('round and 'round n times counterclockwise). Evaluate

$$
\oint_{C_{n}} \frac{x}{x^{2}+y^{2}} d y-\frac{y}{x^{2}+y^{2}} d x
$$

2. (5 pts) Let C be the closed loop (oriented positively) consisting of the right half of the circle $(x-4)^{2}+y^{2}=4$, the left half of the circle $(x+4)^{2}+y^{2}=4$, and the lines $y=2$ and $y=-2$ $(-4 \leq x \leq 4)$. Evaluate the integral

$$
\oint_{C}\left(2 y \cos ^{2}(x)+2 y \sin ^{2}(x)\right) d x-\left(3 x+y^{3} e^{y^{3}}\right) d y
$$

3. (5 pts) Let C be a piecewise-smooth, closed path (beginning and ending at the point (a, b)) and let f and g be differentiable functions of y. Evaluate

$$
\oint_{C} f(y) d x+\left(x f^{\prime}(y)+g(y)\right) d y
$$

4. Consider the vector field $\mathbf{F}=\langle a x, b y, c z\rangle$.
a) $(5 \mathrm{pts})$ Compute $\operatorname{curl}(\mathbf{F})$.
b) (5 pts) Find a function $f(x, y, z)$ such that $\nabla f=\mathbf{F}$.
c) (5 pts) Evaluate $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s$ where C is the circle of radius R centered at the origin (oriented positively).
5. (5 pts) Suppose that f and g have continuous second partial derivatives. Show that

$$
\operatorname{div}(\nabla f \times \nabla g)=0
$$

