MATH 265
 FALL 2009
 FINAL EXAM

1. Consider the vectors $\vec{a}=\langle 2,-1,3\rangle$ and $\vec{b}=\langle 1,1,-4\rangle$. Find the following.
a) $(5 \mathrm{pts}) \vec{a} \cdot \vec{b}$.
b) $(5 \mathrm{pts}) \vec{a} \times \vec{b}$.
c) (5 pts) The angle between \vec{a} and \vec{b}.
2. (5 pts) Find the maximum and minimum values of $f(x, y)=x^{2}+5 y^{2}+2 x y-8 x-16 y$ on the triangle bounded by the lines $x=4, y=0$, and $y=x$.
3. (5 pts) A box with an open top and rectangular bottom is to be constructed from A square feet of material. Show that the maximum volume is obtained when the base of the box is a square.
4. Consider the vector field $\mathbf{F}=\left\langle 2 x+y z^{2}, 1+x z^{2}, 2 x y z\right\rangle$.
a) $(5 \mathrm{pts})$ Compute $\operatorname{div}(\mathbf{F})$.
a) $(5 \mathrm{pts})$ Compute $\operatorname{curl}(\mathbf{F})$.
b) (5 pts) Is (\mathbf{F}) the gradient of a potential function? If so, find a function $f(x, y, z)$ such that $\nabla f=\mathbf{F}$.
5. (5 pts) Find the volume of the portion of the cylinder $x^{2}+y^{2}=1$ that lies between the planes $z=6+x+y$ and $z=-2-x-y$.
6. (5 pts) Find the line of intersection of the planes $x+y-z=2$ and $x-y-z=10$.
7. Consider the portion of the surface $z=x y$.
a) (5 pts) Find the tangent plane to this surface at the point $(2,3,6)$.
b) (5 pts) Find the surface area of the portion of this surface lying above the part of the circle $x^{2}+y^{2}=R^{2}$ in the first quadrant.
8. Consider the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
a) (5 pts) Set up a double integral to find the area enclosed by this ellipse.
b) (5 pts) Now use the coordinate change $x=\operatorname{ar} \cos (\theta)$ and $y=b r \sin (\theta)$ to evaluate the integral (do not forget to compute the Jacobian).
9. (5 pts) Get stoked and evaluate $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$ where S is the hemisphere $x^{2}+y^{2}+z^{2}=16$, $z \geq 0$ oriented positively, and $\mathbf{F}(x, y, z)=\left\langle 2 y \cos (z), e^{x} \sin (z), x e^{y}\right\rangle$.
10. (5 pts) Our last divergence will be to compute $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ over the surface $y^{2}+z^{2}=1,-2 \leq x \leq 2$. Here $\mathbf{F}(x, y, z)=\left\langle 3 x y^{2}+z^{2}, x \cos \left(z^{2}\right), z^{3}-x y\right\rangle$
