MATH 270 SPRING 2003 HOMEWORK 10

Due Friday May 2, 2003.

1. Let *H* be a subgroup of the group *G*. We say that *H* is a *normal* subgroup of *G* if for all $g \in G$ and $h \in H$, $g^{-1}hg \in H$. Prove the following.

- a) (3 pt) If $\phi: G \longrightarrow H$ is a group homomorphism, then $\ker(\phi) = \{x \in G | \phi(x) = e_H\}$ is a normal subgroup of G.
- b) (3 pt) Let A be an abelian group. Show that any subgroup of A is normal.
- c) (3 pt) If A is an abelian subgroup of G, is A necessarily normal?
- 2. Let $\phi: G \longrightarrow H$ be a group homomorphism and let $x \in G$.
 - a) (5 pt) If the order of x is finite, say $|x| = n < \infty$, show that the order of $\phi(x)$ divides n.
 - b) (5 pt) If the order of x is infinite, does it follow that the order of $\phi(x)$ is infinite?
 - c) (5 pt) Show that the group homomorphism $\phi: G \longrightarrow H$ is one to one if and only if $\ker(\phi) = e_G$.
- 3. Let G be a cyclic group.
 - a) (3 pt) Show that if $H \subseteq G$ is a subgroup, then H is cyclic.
 - b) (3 pt) Show that if K is a group and $\phi: G \longrightarrow K$ is a homomorphism, then $\operatorname{im}(\phi) = \{\phi(x) | x \in G\}$ is cyclic.
 - c) (3 pt) Show that any cyclic group is abelian.
 - d) (3 pt) Show that any cyclic group is countable.
 - e) (3 pt) Are the groups $(\mathbb{R}, +)$ and $(\mathbb{Q}, +)$ cyclic? Why or why not?
 - f) (3 pt) Find all n for which the group S_n is cyclic.

4. (6 pt) Show that any group with more than one element has a non-identity abelian subgroup. Suppose that G is a group such that every *proper* subgroup is abelian (that is, if $H \subsetneq G$ then H is abelian). Is G necessarily abelian?

5. An isomorphism of groups $\phi: G \longrightarrow G$ (that is an isomorphism from G to itself) is called an *automorphism*.

- a) (5 pt) Show that Aut(G), the set of all automorphisms of G, forms a group.
- b) (5 pt) If ϕ is an automorphism of G and $g \in G$, show that the order of g is the same as the order of $\phi(g)$.
- c) (5 pt) If $x \in G$ is a fixed element, show that the map defined by $\phi_x(g) = x^{-1}gx$ is an automorphism of G.
- d) (5 pt) Show that the map defined by $f(x) = x^{-1}$ is an automorphism of G if and only if G is abelian.