MATH 270 SUMMER 2004 HOMEWORK 10

Due Friday July 30, 2004.

- 1. Let G and H be groups and $\phi: G \longrightarrow H$ a homomorphism.
 - a) (3 pt) Show that $\phi(e_G) = e_H$.
 - b) (3 pt) Show that if $x \in G$ and $|x| = n < \infty$ then $|\phi(x)|$ divides |x|.
 - c) (3 pt) Show that ϕ is one to one if and only if ker(ϕ) = e_G .
- 2. Let G be a group and H a nonempty subset of G.
 - a) (5 pt) Show that H is a subgroup of G if and only if $x, y \in H \implies xy^{-1} \in H$.
 - b) (5 pt) Show that if G is finite, then H is a subgroup of G if and only if $x, y \in H \implies xy \in H$.
- 3. Let G be a group. An isomorphism $\phi: G \longrightarrow G$ is called an *automorphism*.
 - a) (3 pt) Show that the set of automorphisms of G forms a group under function composition (this group is denoted Aut(G)).
 - b) (3 pt) Show that if $g \in G$ and $\phi \in Aut(G)$ then $|g| = |\phi(g)|$.
 - c) (3 pt) Show that for all $x \in G$ the map $\phi_x : G \longrightarrow G$ defined by $\phi_x(g) = x^{-1}gx$ is in Aut(G).
- 4. Let S_n be the symmetric group on n letters and D_m be the (dihedral) group of symmetries on the regular m-gon.
 - a) (5 pt) Show that $|D_m| = 2m$.
 - b) (5 pt) Show that D_m can be realized as a subgroup of S_m .
 - c) (5 pt) In the group S_n find the inverse of the element $(a_1 \ a_2 \ a_3 \ \cdots \ a_k)$, with $a_i \neq a_j$ if $i \neq j$ and $k \leq n$.
 - d) (5 pt) Let p be a positive prime integer. Find the number of subgroups of S_p of order p.