MATH 270
 SPRING 2003
 HOMEWORK 11

Due Friday May 16, 2003 at the start of the final exam...but early submissions encouraged.

1. Let $f(x)$ be a real-valued function. We say that $\lim _{x \rightarrow a} f(x)=L$ if for all $\epsilon>0$ there exists $\delta>0$ such that $0<|x-a|<\delta \Longrightarrow|f(x)-L|<\epsilon$. Prove the following.
a) (3 pt) If $\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow a} g(x)=M$, and c is a constant then $\lim _{x \rightarrow a}(f(x)+g(x))=L+M$ and $\lim _{x \rightarrow a} c f(x)=c L$.
b) (3 pt) Use part a) to show that the sum of two continuous function is continuous.
c) (3 pt) Show that the set of real-valued continuous functions with domain \mathbb{R} forms a group under addition.
2. A subset $I \subseteq \mathbb{R}$ is called open if for all $x \in I$ there is a $\delta>0$ such that $(x-\delta, x+\delta) \subseteq$ I. A set J is called closed if $\mathbb{R} \backslash J$ is open.
a) (3 pt) Prove that an arbitrary union of open sets is open, is this true for intersections? (Hint: a previous problem set.)
b) (3 pt) Prove that an arbitrary intersection of closed sets is closed, is this true for unions? (Hint: a previous problem set.)
c) (3 pt) Give an example of a set that is neither open nor closed and an example of a set that is both open and closed.
3. (5 pt) Give an example of a bounded set of rational numbers that contains no least upper bound and no greatest lower bound (in the rationals).
