MATH 270 SUMMER 2004 HOMEWORK 11

Due Thursday August 5, 2004.

- 1. Consider the set of rational numbers \mathbb{Q} and fix a prime number p > 0 in \mathbb{Z} .
 - a) (5 pt) Show that any nonzero rational number can be written uniquely in the form $\frac{a}{b}p^n$ where gcd(a,p) = 1 = gcd(b,p) and $n \in \mathbb{Z}$. (By "uniqueness" here I mean that if $\frac{a}{b}p^n = \frac{c}{d}p^m$ then n = m and $\frac{a}{b} = \frac{c}{d}$.)
 - b) (5 pt) Show that if a, b, c, d are all integers that are not divisible by p, and $m, n \in \mathbb{Z}$, and $\frac{a}{b}p^n \frac{c}{d}p^m \neq 0$, then $\frac{a}{b}p^n \frac{c}{d}p^m = \frac{\alpha}{\beta}p^k$ where $\alpha, \beta \in \mathbb{Z}$ are not divisible by p and $k \geq \min(m, n)$.

2. Again consider the rational numbers \mathbb{Q} and a fixed positive prime $p \in \mathbb{Z}$. We write each nonzero rational number as $\frac{a}{b}p^n$ with gcd(a, p) = 1 = gcd(b, p) as in the previous problem. We define a function $d_p : \mathbb{Q} \times \mathbb{Q} \longrightarrow \mathbb{R}$ by

$$d_p(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 2^{-n} & \text{if } x - y = \frac{a}{b}p^n \neq 0 \end{cases}$$

- a) (5 pt) Show that d_p is a metric on \mathbb{Q} .
- b) (5 pt) Describe the unit circle in \mathbb{Q} using the metric (that is, describe the rational numbers that are all one unit away from 0).

3. Let $\{U_i\}_{i \in \Lambda}$ be a collection of open sets in a metric space and $\{X_j\}_{j \in \Gamma}$ be a collection of closed sets.

- a) (3 pt) Show that $\bigcup_{i \in \Lambda} U_i$ is an open set.
- b) (3 pt) Show that $\bigcap_{i\in\Gamma} X_j$ is a closed set.
- c) (3 pt) Restrict yourself the the real numbers (with the standard metric), \mathbb{R} , and give an example to show that an arbitrary intersection of open sets need not be open.
- d) (3 pt) Show that an arbitrary union of closed sets need not be closed.
- e) (3 pt) Find all of the sets in \mathbb{R} that are both closed and open (you may use the fact that any bounded subset of \mathbb{R} has a greatest lower bound and a least upper bound).
- 4. Consider the standard metric on \mathbb{R} (d(x, y) = |x y|).
 - a) (5 pt) Show that the set of rational numbers \mathbb{Q} is a dense subset of \mathbb{R} .
 - b) (5 pt) Give an example of a bounded subset of the rational numbers that has no least upper bound (in the rational numbers). What is its least upper bound in \mathbb{R} ?