MATH 270 SUMMER 2007 HOMEWORK 12

Due Tuesday July 31, 2007.

- 1. Let G and H be groups and $\phi: G \longrightarrow H$ be a homomorphism.
 - a) (3 pt) Show that $\phi(e_G) = e_H$.
 - b) (3 pt) Show that if $x \in G$ with $|x| = n < \infty$ then $|\phi(x)|$ divides |x|.
 - c) (3 pt) Show that ϕ is one to one if and only if ker $(\phi) = e_G$.

2. Let G be a group. An isomorphism $\phi: G \longrightarrow G$ is called an *automorphism*. The set of all automorphisms is denoted by Aut(G).

- a) (5 pt) Show that Aut(G) forms a group under the operation of function composition.
- b) (5 pt) Show that if $g \in G$ and $\phi \in Aut(G)$ then $|g| = |\phi(g)|$.
- c) (5 pt) Show that for all $x \in G$ the map $\phi_x : G \longrightarrow G$ defined by $\phi_x(g) = x^{-1}gx$ is an element of Aut(G).
- d) (5 pt) Show that the map $\psi: G \longrightarrow G$ defined by $\psi(g) = g^{-1}$ is an element of $\operatorname{Aut}(G)$ if and only if G is abelian.

3. (3 pt) For this problem, we denote the integers modulo $n \ (n \in \mathbb{N})$ by \mathbb{Z}_n . Show that if G is a cyclic group then

$$G \cong \begin{cases} \mathbb{Z}_n, \text{ if } |G| = n; \\ \mathbb{Z}, \text{ if } G \text{ is infinite.} \end{cases}$$

4. (5 pt) We have seen in class that the groups $(\mathbb{R}, +)$ and (\mathbb{R}^+, \cdot) are isomorphic. Is the analogue for the rational numbers true? That is, prove or disprove that $(\mathbb{Q}, +)$ and (\mathbb{Q}^+, \cdot) are isomorphic groups.