MATH 270 SUMMER 2007 HOMEWORK 13

Due Thursday August 2, 2007.

1. Let $\{U_i\}_{i\in\Lambda}$ be a collection of open sets in a metric space and $\{X_j\}_{j\in\Gamma}$ be a collection of closed sets.

- a) (3 pt) Show that $\bigcup_{i \in \Lambda} U_i$ is an open set.
- b) (3 pt) Show that $\bigcap_{i\in\Gamma} X_j$ is a closed set.
- c) (3 pt) Show that the intersection of a *finite* number of open sets is open.
- d) (3 pt) Show that the union of a *finite* number of closed sets is closed.
- e) (3 pt) Restrict yourself the the real numbers (with the standard metric), \mathbb{R} , and give an example to show that an arbitrary intersection of open sets need not be open.
- f) (3 pt) Show that an arbitrary union of closed sets need not be closed.
- 2. Consider the standard metric on \mathbb{R} (d(x, y) = |x y|).
 - a) (5 pt) Show that the set of rational numbers \mathbb{Q} is a dense subset of \mathbb{R} .
 - b) (5 pt) Give an example of a bounded subset of the rational numbers that has no least upper bound (in the rational numbers). What is its least upper bound in \mathbb{R} ?

3. Let f(x) be a real valued function (with domain \mathbb{R}). We say that $\lim_{x\to a} f(x) = L$ if for all $\epsilon > 0$ there exists a $\delta > 0$ such that $0 < |x - a| < \delta \Longrightarrow |f(x) - L| < \epsilon$.

- a) (5 pt) Show that if $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$ then $\lim_{x\to a} (f(x) + g(x)) = L + M$.
- b) (5 pt) Show that if c is a constant and $\lim_{x\to a} f(x) = L$, then $\lim_{x\to a} (cf(x)) = cL$.
- c) (5 pt) If X is an open subset of the real line \mathbb{R} , show that the sum of two functions continuous on X is continuous on X (recall that a function is continuous at a if $\lim_{x\to a} f(x) = f(a)$ and is continuous on an open set if it is continuous at every point in the set).
- d) (5 pt) Let \mathfrak{C}_X be the functions that are continuous on X. Let $X \subseteq Y \subseteq \mathbb{R}$. Show that \mathfrak{C}_Y is a subgroup of \mathfrak{C}_X (where the operation is addition of functions).