MATH 270 SPRING 2003 **HOMEWORK 2**

Due Monday January 27, 2003.

- 1. (3 pt) Let x and y be real numbers. Prove the following properties of the absolute value:
 - (a) |xy| = |x||y|.

 - (b) $\left|\frac{x}{y}\right| = \frac{|x|}{|y|} (y \neq 0).$ (c) (Triangle inequality) $|x + y| \leq |x| + |y|.$
- 2. (10 pt) Let n be an integer.
 - (a) Show that n is odd if and only if n^2 is odd.
 - (b) Show that n is even if and only if n^2 is even.
 - (c) Show that $\sqrt{2}$ is an irrational number.

3. (10 pt) Let $z \in \mathbb{C}$ be the complex number a + bi with $a, b \in \mathbb{R}$, the real numbers. The complex conjugate of the number z = a + bi is defined to be $\overline{z} = a - bi$. Prove the following.

- (a) If $z_1, z_2 \in \mathbb{C}$, then $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$.
- (b) If $z_1, z_2 \in \mathbb{C}$, then $\overline{z_1 z_2} = (\overline{z_1})(\overline{z_2})$.
- (c) If $z \in \mathbb{C}$, then $z\overline{z} \in \mathbb{R}$.
- (d) If we define the function $\phi : \mathbb{C} \longrightarrow \mathbb{R}$ by $\phi(z) = z\overline{z}$ show that for all $z_1, z_2 \in \mathbb{C}$, $\phi(z_1z_2) = \phi(z_1)\phi(z_2)$. Is it also true that $\phi(z_1+z_2) = \phi(z_1) + \phi(z_2)$? Prove or give a counterexample.
- 4. (3 pt) Prove that if n and m are positive integers, then $\frac{n+m}{2} \ge \sqrt{nm}$.
- 5. (3 pt) Prove that for all $\epsilon > 0$ ($\epsilon \in \mathbb{R}$), we can find a positive integer N such that $\frac{1}{N} < \epsilon$.