MATH 270
 SPRING 2003
 HOMEWORK 2

Due Monday January 27, 2003.

1. (3 pt) Let x and y be real numbers. Prove the following properties of the absolute value:
(a) $|x y|=|x||y|$.
(b) $\left|\frac{x}{y}\right|=\frac{|x|}{|y|}(y \neq 0)$.
(c) (Triangle inequality) $|x+y| \leq|x|+|y|$.
2. (10 pt) Let n be an integer.
(a) Show that n is odd if and only if n^{2} is odd.
(b) Show that n is even if and only if n^{2} is even.
(c) Show that $\sqrt{2}$ is an irrational number.
3. (10 pt) Let $z \in \mathbb{C}$ be the complex number $a+b i$ with $a, b \in \mathbb{R}$, the real numbers. The complex conjugate of the number $z=a+b i$ is defined to be $\bar{z}=a-b i$. Prove the following.
(a) If $z_{1}, z_{2} \in \mathbb{C}$, then $\overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$.
(b) If $z_{1}, z_{2} \in \mathbb{C}$, then $\overline{z_{1} z_{2}}=\left(\overline{z_{1}}\right)\left(\overline{z_{2}}\right)$.
(c) If $z \in \mathbb{C}$, then $z \bar{z} \in \mathbb{R}$.
(d) If we define the function $\phi: \mathbb{C} \longrightarrow \mathbb{R}$ by $\phi(z)=z \bar{z}$ show that for all $z_{1}, z_{2} \in \mathbb{C}$, $\phi\left(z_{1} z_{2}\right)=\phi\left(z_{1}\right) \phi\left(z_{2}\right)$. Is it also true that $\phi\left(z_{1}+z_{2}\right)=\phi\left(z_{1}\right)+\phi\left(z_{2}\right)$? Prove or give a counterexample.
4. (3 pt) Prove that if n and m are positive integers, then $\frac{n+m}{2} \geq \sqrt{n m}$.
5. (3 pt) Prove that for all $\epsilon>0(\epsilon \in \mathbb{R})$, we can find a positive integer N such that $\frac{1}{N}<\epsilon$.
