MATH 270
 SUMMER 2004
 HOMEWORK 2

Due Wednesday June 23, 2004.

1. Let x, y, z be real numbers. Prove the following.
a) (3 pt) (The Triangle Inequality.) $|x+y| \leq|x|+|y|$.
b) (3 pt) Show that if $x \leq y$ and $z<0$ then $z x \geq z y$ and $\frac{x}{z} \geq \frac{y}{z}$.
2. (5 pt) Let $\epsilon, \alpha>0$ be a positive real numbers. Show that there exists a natural number N such that $N \epsilon>\alpha$.
3. Let $\alpha<\beta$ be real numbers and $n \in \mathbb{N}$.
a) (5 pt) Show that if $\beta-\alpha>n$ then there are at least n distinct integers strictly between α and β.
b) (5 pt) Show that if $\alpha<\beta$ are real numbers then there is a rational number q such that $\alpha<q<\beta$.
4. (Properties of Divisibility.) Let n, m be integers with $n \neq 0$. We say that n divides m (and we write $n \mid m$) if there is an integer k such that $m=k n$. Prove the following properties of divisibility.
a) (3 pt) Show that if $n \mid a$ and $n \mid b$ then $n \mid(r a+s b)$ for all $r, s \in \mathbb{Z}$.
b) (3 pt) Show that if n and m are relatively prime (that is, they have no common divisors other than ± 1) and $n \mid a m$ then $n \mid a$. (Hint: you may use the fact that if n and m are relatively prime, then we can find integers r and s such that $r n+s m=1 \ldots$.this is an important property of the integers that we will verify later and you will see again many times.)
c) (3 pt) Show that if n and m are relatively prime and $n \mid a$ and $m \mid a$ then $n m \mid a$.
5. (5 pt) (The Rational Root Test.) Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial with each $a_{i} \in \mathbb{Z}(0 \leq i \leq n)$. Suppose that this polynomial has the rational root $\frac{a}{b}$ with $a, b \in \mathbb{Z}$ having no common factors (other than ± 1). Show that $a \mid a_{0}$ and $b \mid a_{n}$. Use this to find all roots of the polynomial $6 x^{4}-13 x^{3}-17 x^{2}+26 x+10$.
