MATH 270 SUMMER 2004 HOMEWORK 2

Due Wednesday June 23, 2004.

1. Let x, y, z be real numbers. Prove the following.

- a) (3 pt) (The Triangle Inequality.) $|x + y| \le |x| + |y|$.
- b) (3 pt) Show that if $x \le y$ and z < 0 then $zx \ge zy$ and $\frac{x}{z} \ge \frac{y}{z}$.

2. (5 pt) Let $\epsilon, \alpha > 0$ be a positive real numbers. Show that there exists a natural number N such that $N\epsilon > \alpha$.

- 3. Let $\alpha < \beta$ be real numbers and $n \in \mathbb{N}$.
 - a) (5 pt) Show that if $\beta \alpha > n$ then there are at least n distinct integers strictly between α and β .
 - b) (5 pt) Show that if $\alpha < \beta$ are real numbers then there is a rational number q such that $\alpha < q < \beta$.

4. (Properties of Divisibility.) Let n, m be integers with $n \neq 0$. We say that n divides m (and we write n|m) if there is an integer k such that m = kn. Prove the following properties of divisibility.

- a) (3 pt) Show that if n|a and n|b then n|(ra+sb) for all $r, s \in \mathbb{Z}$.
- b) (3 pt) Show that if n and m are relatively prime (that is, they have no common divisors other than ± 1) and n|am then n|a. (Hint: you may use the fact that if n and m are relatively prime, then we can find integers r and s such that rn + sm = 1...this is an important property of the integers that we will verify later and you will see again many times.)
- c) (3 pt) Show that if n and m are relatively prime and n|a| and m|a| then nm|a.

5. (5 pt) (The Rational Root Test.) Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be a polynomial with each $a_i \in \mathbb{Z}$ ($0 \le i \le n$). Suppose that this polynomial has the rational root $\frac{a}{b}$ with $a, b \in \mathbb{Z}$ having no common factors (other than ± 1). Show that $a|a_0$ and $b|a_n$. Use this to find all roots of the polynomial $6x^4 - 13x^3 - 17x^2 + 26x + 10$.