MATH 270 SPRING 2003 **HOMEWORK 3**

Due Wednesday February 5, 2003.

- 1. (3 pt) Show that the statement $P \Longrightarrow Q$ is equivalent to $\sim Q \Longrightarrow \sim P$.
- 2. Let $n, m \in \mathbb{Z}$ be integers (not both 0), and let $d = \gcd(n, m)$ and $L = \operatorname{lcm}(n, m)$.
 - (a) (5 pt) Show that there exist $a, b \in \mathbb{Z}$ such that an + bm = d (so the greatest common divisor of two integers is a linear combination of the two elements...this is a very important property of the integers).
 - (b) (5 pt) Show that there exists $x, y \in \mathbb{Z}$ such that xn + ym = L.
 - (c) (5 pt) Show that if gcd(n,m) = d and lcm(n,m) = L, then nm = dL.

3. For the following statements, give the negation.

- (a) (3 pt) Bill and Fred went to see the movie.
- (b) (3 pt) The equation f(x) = 0 has a unique solution in \mathbb{R} .
- (c) (3 pt) Every differentiable function is continuous.

4. (10 pt) Let $\{A_{\alpha}\}_{\alpha\in\Lambda}$ be a collection of sets all contained in some universal set U. For any subset $B \subseteq U$ we denote the compliment of B in U by B^{c} . Show the following.

- $\begin{array}{ll} (\mathrm{a}) & (\bigcup_{\alpha \in \Lambda} A_{\alpha})^{\mathrm{c}} = \bigcap_{\alpha} (A_{\alpha})^{\mathrm{c}}. \\ (\mathrm{b}) & (\bigcap_{\alpha \in \Lambda} A_{\alpha})^{\mathrm{c}} = \bigcup_{\alpha} (A_{\alpha})^{\mathrm{c}}. \end{array}$