MATH 270
 SPRING 2003
 HOMEWORK 3

Due Wednesday February 5, 2003.

1. (3 pt) Show that the statement $P \Longrightarrow Q$ is equivalent to $\sim Q \Longrightarrow \sim P$.
2. Let $n, m \in \mathbb{Z}$ be integers (not both 0), and let $d=\operatorname{gcd}(n, m)$ and $L=\operatorname{lcm}(n, m)$.
(a) (5 pt) Show that there exist $a, b \in \mathbb{Z}$ such that $a n+b m=d$ (so the greatest common divisor of two integers is a linear combination of the two elements...this is a very important property of the integers).
(b) (5 pt) Show that there exists $x, y \in \mathbb{Z}$ such that $x n+y m=L$.
(c) $(5 \mathrm{pt})$ Show that if $\operatorname{gcd}(n, m)=d$ and $\operatorname{lcm}(n, m)=L$, then $n m=d L$.
3. For the following statements, give the negation.
(a) $(3 \mathrm{pt})$ Bill and Fred went to see the movie.
(b) (3 pt) The equation $f(x)=0$ has a unique solution in \mathbb{R}.
(c) (3 pt) Every differentiable function is continuous.
4. (10 pt) Let $\left\{A_{\alpha}\right\}_{\alpha \in \Lambda}$ be a collection of sets all contained in some universal set U. For any subset $B \subseteq U$ we denote the compliment of B in U by B^{c}. Show the following.
(a) $\left(\bigcup_{\alpha \in \Lambda} A_{\alpha}\right)^{\mathrm{c}}=\bigcap_{\alpha}\left(A_{\alpha}\right)^{\mathrm{c}}$.
(b) $\left(\bigcap_{\alpha \in \Lambda} A_{\alpha}\right)^{\mathrm{c}}=\bigcup_{\alpha}\left(A_{\alpha}\right)^{\mathrm{c}}$.
