MATH 270

SUMMER 2004
HOMEWORK 3

Due Monday June 28, 2004.

1. Let A, B, and C be sets. Prove the following.
a) $(3 \mathrm{pt}) A \backslash(B \bigcup C)=(A \backslash B) \bigcap(A \backslash C)$.
b) $(3 \mathrm{pt}) A \backslash(B \cap C)=(A \backslash B) \bigcup(A \backslash C)$.
2. We recall that if $m, n \in \mathbb{N}$ then the greatest common divisor of m and n (we write $\operatorname{gcd}(m, n)=d$ or $(m, n)=d$) is a (positive) common divisor of m and n with the property that if d^{\prime} is another common divisor of m and n then $d^{\prime} \mid d$. Additionally the least commmon multiple of m and n (we write $\operatorname{lcm}(m, n)=L$) is a positive common multiple of m and n such that if L^{\prime} is another common multiple of m and n then $L \mid L^{\prime}$.

Prove the following.
a) (5 pt) If $m, n \in \mathbb{N}$ then $\operatorname{lcm}(m, n)$ exists.
b) (5 pt) If $m, n \in \mathbb{N}$ and $d=\operatorname{gcd}(m, n)$ then there exist $r, s \in \mathbb{Z}$ such that $r m+s n=d$. Your proof should demonstrate the existence of the greatest common divisor of m and n. (This is a very important property of the integers.)
c) (5 pt) If $m, n \in \mathbb{N}, d=\operatorname{gcd}(m, n)$, and $L=\operatorname{lcm}(m, n)$, then $m n=d L$.
3. Let A, B and C be sets and denote the power set of the set X by $P(X)$.
a) (3 pt) Show that $C \subseteq A \cap B$ if and only if $C \subseteq A$ and $C \subseteq B$.
b) (5 pt) Show that $P(A \bigcap B)=P(A) \cap P(B)$.
c) (5 pt) Show that $P(A) \bigcup P(B) \subseteq P(A \bigcup B)$. When does set equality hold here?

