MATH 270
 SUMMER 2004 HOMEWORK 3

Due Friday June 22, 2007.
You may freely use the fact that any subset of \mathbb{N} has a minimal element.

1. (5 pt) (The Euclidean Algorithm). Show that if $n, m \in \mathbb{Z}$ and $m \neq 0$ then there is an integer, q, and $r \in \mathbb{N}_{0}$ such that

$$
n=q m+r
$$

with $0 \leq r<|m|$.
2. We recall that if $m, n \in \mathbb{Z}$ then the greatest common divisor of m and n (we write $\operatorname{gcd}(m, n)=d$ or $(m, n)=d$) is a (positive) common divisor of m and n with the property that if d^{\prime} is another common divisor of m and n then $d^{\prime} \mid d$. Additionally the least commmon multiple of m and n (we write lcm $(m, n)=L$) is a positive common multiple of m and n such that if L^{\prime} is another common multiple of m and n then $L \mid L^{\prime}$.

Prove the following.
a) (5 pt) If $m, n \in \mathbb{N}$ and $d=\operatorname{gcd}(m, n)$ then there exist $r, s \in \mathbb{Z}$ such that $r m+s n=d$. Your proof should demonstrate the existence of the greatest common divisor of m and n. (This is a very important property of the integers.)
b) (5 pt) If $m, n \in \mathbb{N}, d=\operatorname{gcd}(m, n)$, and $L=\operatorname{lcm}(m, n)$, then $m n=d L$.
3. A natural number p is said to be prime if its only (positive) factors are itself and 1.
a) (3 pt) Show that if $n>1$ is a natural number, then n can be written as a product of primes.
b) (3 pt) Show that if p is prime, $a, b \in \mathbb{N}$, and $p \mid a b$ then $p \mid a$ or $p \mid b$.
c) (3 pt) Show that if $n>1$ is a natural number, then n can be expressed uniquely as a product of primes (this is the "Fundamental Theorem of Arithmetic").
4. (Properties of Divisibility.) Let $n, m \in \mathbb{Z}$ with $n \neq 0$. We say that n divides m (and write $n \mid m$) if there is an integer k such that $m=k n$. Prove the following divisibility properties. For this problem $a, b, r, s, n, m \in \mathbb{Z}$.
a) (3 pt) Show that if $n \mid a$ and $n \mid b$ then $n \mid(r a+s b)$.
b) $(3 \mathrm{pt})$ Show that if $\operatorname{gcd}(n, m)=1$ and $n \mid a m$ then $n \mid a$.
c) $(3 \mathrm{pt})$ Show that if $\operatorname{gcd}(n, m)=1$ and $n \mid a$ and $m \mid a$ then $m n \mid a$.
5. (5 pt) (it The Rational Root Test) Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial with each $a_{i} \in \mathbb{Z}$. Suppose that this polynomial has the rational root $\frac{a}{b}$ with $a, b \in \mathbb{Z}$ and $\operatorname{gcd}(a, b)=1$. Show that $a \mid a_{0}$ and $b \mid a_{n}$. Use this to find all complex roots of the polynomial $14 x^{4}+x^{3}+25 x^{2}+2 x-6$.

