MATH 270

SPRING 2003
HOMEWORK 4

Due Friday February 14, 2003.

1. (3 pt) Let A and B be sets. Show that $(A \backslash B) \bigcup(B \backslash A)=(A \bigcup B) \backslash(A \bigcap B)$.
2. (10 pt) Let A, B, and C be sets. Show that $(A \backslash B) \backslash C=A \backslash(B \backslash C)$ if and only if $A \cap C=\emptyset$.
3. Consider the collection of sets $A_{n}=\left(-\frac{1}{n}, \frac{1}{n}\right), n \in \mathbb{N}$. Let $I \subseteq \mathbb{N}$ be a nonempty subset of \mathbb{N}. Show the following.
(a) (5 pt) $\bigcup_{m \in I} A_{m}=A_{k}$ for some $k \in I$.
(b) (5 pt) $\bigcap_{m \in I} A_{m}=A_{k}$ for some $k \in I$ if and only if I is finite.
(c) (5 pt) $\bigcap_{m \in I} A_{m}$ is a set containing a single real number (what is it?) if and only if I is infinite.
4. We say that a collection of sets $\left\{A_{n} \mid n \in \mathbb{N}\right\}$ is nested if for all $i, j \in \mathbb{N}$ with $i \leq j$, $A_{j} \subseteq A_{i}$ (for example, the sets in the previous problem are nested).
(a) (3 pt) Give an example of a nested collection of open intervals $\left(a_{i}, b_{i}\right) \subseteq \mathbb{R}$ such that $\bigcap_{i}\left(a_{i}, b_{i}\right)=[a, b]$ (and prove that your example works).
(a) (3 pt) Give an example of a collection of closed intervals $\left[a_{i}, b_{i}\right] \subseteq \mathbb{R}$ such that $\bigcup_{i}\left[a_{i}, b_{i}\right]=(a, b)$ (and prove that your example works).
