MATH 270

SUMMER 2004

HOMEWORK 4

Due Friday July 2, 2004.

1. (5 pt) Show that for all integers $n \geq 2, \sqrt{n}<1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}$.
2. Recall that the Fibonacci numbers are defined recursively by $a_{1}=1=a_{2}$ and $a_{n}=a_{n-1}+a_{n-2}$ for all $n \geq 3$.
a) $(5 \mathrm{pt})$ Show that $\operatorname{gcd}\left(a_{n}, a_{n+1}\right)=1$ for all $n \in \mathbb{N}$.
b) $(5 \mathrm{pt})$ Show that $\operatorname{gcd}\left(a_{n}, a_{n+2}\right)=1$ for all $n \in \mathbb{N}$.
3. (5 pt) Find a closed-form formula for

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{2 n}(x) d x, n \geq 1
$$

and prove (by induction) that your formula is valid.
4. (3 pt) Prove that for every integer $n, n^{3}+6 n^{2}+11 n+6$ is divisible by 3 .
5. The game of poker is played with 5 cards from a standard deck (we will assume that there are no jokers).
a) (3 pt) How many distinct 5 -card hands are there?
b) (3 pt) How many two-pair hands are there ("two-pairs" is a hand that looks like $x-x-y-y-z$ with x, y, z distinct)?
c) (3 pt) How many flushes are there (a flush is a hand where all the cards are of the same suit)?
d) (3 pt) How many straights are there (a straight is a consisting of 5 cards in consecutive order...we will assume that an ace can be either high or low)?
e) (3 pt) How many straight-flushes are there (a straight-flush is a hand that is both a straight and a flush)?

