MATH 270
 SPRING 2003
 HOMEWORK 5

Due Friday February 21, 2003.

1. Let $a \in \mathbb{R}$ be positive and consider the sequence of real numbers:

$$
\{\sqrt{a}, \sqrt{a+\sqrt{a}}, \sqrt{a+\sqrt{a+\sqrt{a}}} \cdots\} .
$$

(a) $(3 \mathrm{pt})$ Show that the sequence is bounded above (that is, show that there is a real number N such that every term of the sequence is less than or equal to $N)$.
(b) (3 pt) Show that the sequence is monotonically increasing (that is, show that the successive terms of the sequence increase in size).
(c) $(3 \mathrm{pt}) \mathrm{A}$ theorem from calculus states that any bounded, monotonic sequence must converge. To what real number does the above sequence converge?
2. (5 pt) Show that for all integers $n \geq 6, n^{n}>2^{n} n$!.
3. (5 pt) Show that for all integers $n \geq 2, \sqrt{n}<1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}$.
4. The Fibonacci numbers are defined recursively by the formula $a_{1}=1, a_{2}=1$ and $a_{n}=a_{n-2}+a_{n-1}$ for all $n \geq 3$.
(a) (3 pt) Show that $\operatorname{gcd}\left(a_{n}, a_{n+1}\right)=1$ for all $n \in \mathbb{N}$.
(b) (3 pt) Show that $\operatorname{gcd}\left(a_{n}, a_{n+2}\right)=1$ for all $n \in \mathbb{N}$.
5. Verify the following equations for all integers $m \geq 0$.
(a) $(5 \mathrm{pt}) \int_{0}^{\frac{\pi}{2}} \cos ^{2 m}(x) d x=\frac{(2 m)!}{2^{2 m}(m!)^{2}}\left(\frac{\pi}{2}\right)$.
(b) $(5 \mathrm{pt}) \int_{0}^{\frac{\pi}{2}} \cos ^{2 m+1}(x) d x=\frac{2^{2 m}(m!)^{2}}{(2 m+1)!}$.

Remark: For fun, see if you can use this result to inductively find the formula of the n-dimensional sphere of radius R.

